K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

Bạn tham khảo ở đây nhé => https://olm.vn/hoi-dap/question/607241.html

2 tháng 2 2017

\(\left\{\begin{matrix}\left|x-2011y\right|\ge0\\\left(y-1\right)^{2012}\ge0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011y=0\\y-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}x-2011y=0\\y=1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-2011=0\Rightarrow x=2011\\y=1\end{matrix}\right.\)

Vậy................

18 tháng 2 2019

Giải

Để |x-2011y|+(y-1)2012=0 thì cả hai số hạng trên cùng bằng 0 hoặc hai số hạng trên trái dấu nhau nhưng |x-2011y| luôn lớn hơn hoặc bằng 0, (y-1)2012  có số mũ chẵn nên cũng lớn hơn hoặc bằng 0

=> Cả hai số trên cùng dấu nên cả hai số trên đều phải bằng 0

=> (y-1)2012 =0 và |x-2011y|=0

=> y-1=0=>y=1 và |x-2011y|=0<=> |x-2011.1|=0=>x-2011=0=>x=2011

Vậy x=2011 và y=1

27 tháng 5 2020

Ta dễ dàng nhận thấy : 

\(|x-2011y|\ge0\)

\(\left(y-1\right)^{2012}\ge0\)

Cộng lại ta có : 

\(|x-2011y|+\left(y-1\right)^{2012}\ge0\)

Dấu = xảy ra \(< =>\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)

\(< =>\hept{\begin{cases}x-2011=0\\y=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=2011\\y=1\end{cases}}\)

22 tháng 11 2018

a,\(|x-2006y|+|x-2012|\le0\left(1\right)\)

Có \(|x-2006y|\ge0\forall x,y\left(2\right)\)

\(|x-2012|\ge0\forall x\left(3\right)\)

Từ (1) , (2) , (3)=> \(|x-2006y|+|x-2012|=\)0(4)

Từ (2),(3),(4)

<=>\(\hept{\begin{cases}x-2006y=0\\x-2012=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2006y\left(5\right)\\x=2012\left(6\right)\end{cases}}\)

thay x=2012 vào (5) ta có 

2012=2006y

<=>y=\(\frac{1006}{1003}\)

Vậy x=2012;y=\(\frac{1006}{1003}\)

b,\(|x-2011y|+|y-1|=0\left(7\right)\)

\(|x-2011y|\ge0\forall x,y\left(8\right)\)

\(|y-1|\ge0\forall y\left(9\right)\)

Từ (6),(7),(8)

<=>\(\hept{\begin{cases}x-2011y=0\\y-1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2011y\left(10\right)\\y=1\left(11\right)\end{cases}}\)

thay y=1 vào (10) ta có 

x=2011.1=2011

vậy x=2011;y=1

18 tháng 6 2016

\(\left|x-2011y\right|+\left(x-1\right)^{2012}=0\)

Vì \(\left|x-2011y\right|\ge0\)và \(\left(x-1\right)^{2012}\ge0\)

\(\Rightarrow\left|x-2011y\right|+\left(y-1\right)^{2012}\ge0\)

Dấu "=" xảy ra khi:

\(\left|x-2011y\right|=0\)và \(\left(y-1\right)^{2012}=0\)

Xét (y-1)2012=0

=>y-1=0

=>y=0+1=1

Thay y=1 và |x-2011y|=0 ta có:

|x-2011.1|=0

=>|x-2011|=0

=>x-2011=0

=>x=0+2011=2011

Vậy y=1 và x=2011

18 tháng 6 2016

|x-2011y|+(y-1)2012=0

ta thấy lx-2011yl; (y-1)2012 >/= 0

=> lx-2011yl=0         => x-2011y      =>x=2011y=2011

và (y-1)2012=0               =>y-1=0           => y=1

5 tháng 3 2019

x,y,z=0

1 tháng 9 2020

Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)

\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)

+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)

\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)

\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)

Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )

18 tháng 11 2018

Bạn mở lên "Câu hỏi của Nguyễn Văn Phương" đi

18 tháng 11 2018

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)

vậy x=7, x=8 hay x=6

\(\left(x-1\right)\left(y+2\right)=5\)

\(\Rightarrow\left(x-1\right);\left(y+2\right)\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

Xét bảng 

x-1-11-55
x02-46
y+2-11-55
y-3-1-73

Vậy cặp số xy là.....................

16 tháng 4 2019

b,\(\text{Vì}\left(x-2011\right)^2\)là nguyên dương và \(|y+2012|\)cũng nguyên dương

mà  \(\left(x-2011\right)^2+|y+2012|=0\)

\(\Rightarrow\orbr{\begin{cases}x-2011=0\\y+2012=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2011\\y=-2012\end{cases}}\)

Vậy \(\left(x;y\right)=\left(2011;-2012\right)\)

   phần a, bạn Minh hàn băng làm rồi  nha