giải phương trình
các bn giúp mình với !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: ĐKXĐ: x<>8
\(\dfrac{3}{2x-16}+\dfrac{3x-20}{x-8}+\dfrac{1}{8}=\dfrac{13x-102}{3x-24}\)
=>\(\dfrac{9}{6\left(x-8\right)}+\dfrac{18x-120}{6\left(x-8\right)}-\dfrac{26x-204}{6\left(x-8\right)}=\dfrac{-1}{8}\)
=>\(\dfrac{18x-111-26x+204}{6\left(x-8\right)}=\dfrac{-1}{8}\)
=>\(\dfrac{-8x+93}{6x-48}=\dfrac{-1}{8}\)
=>\(\dfrac{8x-93}{6x-48}=\dfrac{1}{8}\)
=>8(8x-93)=6x-48
=>64x-744-6x+48=0
=>58x=696
=>x=12
d: ĐKXĐ: x<>1; x<>-1
\(\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x+4}+\dfrac{12x-1}{4x-4}\)
=>\(\dfrac{24}{4\left(x-1\right)\left(x+1\right)}+\dfrac{20\left(x^2-1\right)}{4\left(x-1\right)\left(x+1\right)}=\dfrac{\left(8x-1\right)\left(x-1\right)+\left(12x-1\right)\left(x+1\right)}{4\left(x-1\right)\left(x+1\right)}\)
=>8x^2-9x+1+12x^2+12x-x-1=24+20x^2-20
=>20x^2+2x=20x^2+4
=>2x=4
=>x=2(loại)
\(\dfrac{x+2}{x-1}=\dfrac{x-1}{x-3}\) (1)
ĐKXĐ: \(x\ne1;x\ne3\)
(1) \(\Leftrightarrow\left(x+2\right)\left(x-3\right)=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-3x+2x-6=x^2-2x+1\)
\(\Leftrightarrow-3x+2x+2x=1+6\)
\(\Leftrightarrow x=7\) (nhận)
Vậy S = {7}
ĐKXĐ: \(x\ge1\)
\(\Rightarrow\left(\sqrt{x-1}+\sqrt{2x+1}\right)^2=1\Leftrightarrow x-1+2x+1+2\sqrt{\left(x-1\right)\left(2x+1\right)}=1\Leftrightarrow3x+2\sqrt{2x^2-x-1}=1\) \(\Leftrightarrow2\sqrt{2x^2-x-1}=1-3x\Rightarrow\left(2\sqrt{2x^2-x-1}\right)^2=\left(1-3x\right)^2\Leftrightarrow8x^2-4x-4=9x^2-6x+1\) \(\Leftrightarrow x^2-2x+5=0\Leftrightarrow\left(x-1\right)^2+4=0\Leftrightarrow\left(x-1\right)^2=-4\) vô lí vì VT\(\ge0\) mà VP<0 \(\Rightarrow\) ko có x Vậy...
Đk:\(-4\le x\le1.\)
Đặt \(\sqrt{1-x}=a,\sqrt{4+x}=b.\)
\(\Rightarrow\hept{\begin{cases}a+b=3\\a^2+b^2=5\end{cases}\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2=9\\a^2+b^2=5\end{cases}\Rightarrow}ab=2\Rightarrow\left(a-b\right)^2=1.\Rightarrow\orbr{\begin{cases}a-b=1\\a-b=-1\end{cases}\Rightarrow}\orbr{\begin{cases}a=2,b=1\\a=1,b=2\end{cases}}.}\)
Từ đó suy ra x=-3,x=0
a: 3x-4=0
=>3x=4
hay x=4/3
b: (x+2)(2x-3)=0
=>x+2=0 hoặc 2x-3=0
=>x=-2 hoặc x=3/2
Gọi 4 số tự nhiên liên tiếp đó là n, n + 1, n+ 2, n + 3 (n thuộc N).
Ta có:
n(n + 1)(n + 2)(n + 3) + 1
= n.(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)( n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t thuộc N) thì thay vào (*), ta có:
t( t + 2 ) + 1
= t2 + 2t + 1
= ( t + 1 )2
= (n2 + 3n + 1)2
Vì n thuộc N nên n2 + 3n + 1 thuộc N
Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương
\(\sqrt{2016-x}+\sqrt{x-2014}=x^2-4030x+4060227\) (*)
Điều kiện : \(2014\le x\le2016\)
Áp dụng tính chất : \(\left(a+b\right)^2\)\(\le\)\(\left(a^2+b^2\right)\)với \(\forall a,b\)
Ta có:
\(\sqrt{x-2016}+\sqrt{x-2014}^2\) \(\le\)\(2\left(2016-x+x-2014\right)\)\(=4\)
\(\Rightarrow\sqrt{\left(2016-x\right)+}\sqrt{\left(x-2014\right)\le2}\)\(\left(1\right)\)
Mặt khác: \(x^2-4030x+4060227=\left(x-2015\right)^2+2\left(2\right)\)
Từ (1) và (2) ta có:
\(\Rightarrow\)(*) \(\Leftrightarrow\sqrt{2016-x}+\sqrt{x-2014}=\left(x-2015\right)^2+2=2\)
\(\Leftrightarrow\left(x-2015\right)^2=0\)
\(\Rightarrow x=2015\) ( Thỏa mãn điều kiện)
Vậy phương trình có 1 nghiệm duy nhất là x=2015
\(\frac{x-2009-2010}{2008}+\frac{x-2008-2010}{2009}+\frac{x-2008-2009}{2010}=3\)
\(\Rightarrow\left(\frac{x-4019}{2008}-1\right)+\left(\frac{x-4018}{2009}-1\right)+\left(\frac{x-4017}{2010}-1\right)=0\)
\(\Rightarrow\frac{x-6027}{2008}+\frac{x-6027}{2009}+\frac{x-6027}{2010}=0\)
\(\Rightarrow\left(x-6027\right)\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
Mà \(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}\ne0\)
\(\Rightarrow x-6027=0\)
\(\Rightarrow x=6027\)
Vậy x = 6027
cảm ơn bn nhiều