K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{2016-x}+\sqrt{x-2014}=x^2-4030x+4060227\) (*)

Điều kiện : \(2014\le x\le2016\)

Áp dụng tính chất : \(\left(a+b\right)^2\)\(\le\)\(\left(a^2+b^2\right)\)với \(\forall a,b\)

Ta có:

\(\sqrt{x-2016}+\sqrt{x-2014}^2\) \(\le\)\(2\left(2016-x+x-2014\right)\)\(=4\)

\(\Rightarrow\sqrt{\left(2016-x\right)+}\sqrt{\left(x-2014\right)\le2}\)\(\left(1\right)\)

Mặt khác: \(x^2-4030x+4060227=\left(x-2015\right)^2+2\left(2\right)\)

Từ (1) và (2) ta có:

\(\Rightarrow\)(*) \(\Leftrightarrow\sqrt{2016-x}+\sqrt{x-2014}=\left(x-2015\right)^2+2=2\)

\(\Leftrightarrow\left(x-2015\right)^2=0\)

\(\Rightarrow x=2015\) ( Thỏa mãn điều kiện)

Vậy phương trình có 1 nghiệm duy nhất là x=2015

1 tháng 11 2020

\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

\(ĐKXĐ:\hept{\begin{cases}\sqrt{x^2+x-1}\ge0\\\sqrt{x-x^2+1}\ge0\end{cases}}\)

Vì \(\sqrt{x^2+x-1}\ge0\)

\(\Rightarrow\)Áp dụng bđt Cô-si ta có: \(1+\left(x^2+x-1\right)\ge2\sqrt{x^2+x-1}\)(1)

Tương tự ta có: \(1+\left(x-x^2+1\right)\ge2\sqrt{x-x^2+1}\)(2)

Cộng (1) và (2) ta có: 

\(1+\left(x^2+x-1\right)+1+\left(x-x^2+1\right)\ge2\sqrt{x^2+x-1}+2\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x^2+x-1+1+x-x^2+1\ge2.\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow2+2x\ge2\left(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\right)\)

\(\Leftrightarrow1+x\ge\sqrt{x^2+x-1}+\sqrt{x-x^2+1}\)

\(\Leftrightarrow1+x\ge x^2-x+2\)

\(\Leftrightarrow x^2-x+2-1-x\le0\)

\(\Leftrightarrow x^2-2x+1\le0\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)(3)

Vì \(\left(x-1\right)^2\ge0\forall x\)(4)

Từ (3) và (4) \(\Rightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Thay \(x=1\)vào ĐKXĐ ta thấy \(x=1\) thỏa mãn ĐKXĐ

Vậy \(x=1\)

1 tháng 11 2020

\(\sqrt{x+x-1}+\sqrt{x-x^2+1}=x\left(x-1\right)+2\left(đk:...\ge x\ge\frac{1}{2}\right)\)( giải bpt này ra x-x2+1>=0 là tìm đc số trong dấu ...)

\(< =>\sqrt{x+x-1}-1+\sqrt{x-x^2+1}-1=x\left(x-1\right)\)

\(< =>\frac{2x-2}{\sqrt{x+x-1}+1}+\frac{x-x^2}{\sqrt{x-x^2+1}+1}=x\left(x-1\right)\)

\(< =>\frac{2\left(x-1\right)}{\sqrt{x+x-1}+1}+\frac{x\left(x-1\right)}{-\sqrt{x-x^2+1}-1}-x\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(\frac{2}{\sqrt{x+x-1}+1}+\frac{x}{-\sqrt{x-x^2+1}-1}-x\right)=0\)

\(< =>x=1\)( bạn đánh giá phần trong ngoặc to = đk ban đầu nhé )

14 tháng 5 2016

đây nè bạn http://diendan.hocmai.vn/showthread.php?t=429334

15 tháng 5 2016

vì pt=1

=>x-1=<2

x-2>=-1

giải ra ta được 1=<x=<3

26 tháng 9 2016

\(2x+\left|x-\frac{1}{2}\right|=2\)

26 tháng 9 2016

Điều kiện x \(\ge\frac{1}{4}\)

Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))

=> x = a2 + \(\frac{1}{4}\)

=> PT <=> 2a2 + \(\frac{1}{2}\)\(\sqrt{a^2+\frac{1}{4}+a}\)= 2

<=> \(\sqrt{a^2+\frac{1}{4}+a}\)\(\frac{3}{2}-2a\)

<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2

<=> 4a4 - 7a2 - a + 2 = 0

<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0

<=> a = 0,5

<=> x = 0,5

Ta có : \(-x^3+x^2+4=0\)

\(\Delta=1^2-4.4.\left(-1\right)=17>0\)

Vậy phương trình có 2 nghiệm phân biệt : 

\(x_1=\frac{-1-\sqrt{17}}{-1};x_2=\frac{-1+\sqrt{17}}{-1}\)