Rút gọn biểu thức sau:
\(P=\frac{12^{10}+6^9.4^6}{15.2^{18}.9^4-2^{19}-27^3}\)
Mình cần gấp các bạn giúp nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đăng lên H.vn thử xem . Trên đấy có nhiều người trả lời giúp hơn đấy mà còn nhanh hơn nữa.
\(A=\dfrac{2^{20}\cdot3^{10}+2^9\cdot2^{12}\cdot3^9}{2^{18}\cdot5\cdot3\cdot3^8-2^{19}\cdot3^9}\)
\(=\dfrac{2^{20}\cdot3^9\left(3+2\right)}{2^{18}\cdot3^9\left(5-2\right)}=4\cdot\dfrac{5}{3}=\dfrac{20}{3}\)
\(\dfrac{2^{20}.27^3+30.4^9.9^4}{6^9.4^5+12^{10}}=\dfrac{2^{20}.3^9+3.2.5.2^{18}.3^8}{2^9.3^9+2^{10}+2^{20}.3^{10}}\)
\(=\dfrac{2^{19}.3^9.\left(2+5\right)}{2^9.3^9.\left(1+2^{11}.3\right)+2^{10}}=\dfrac{2^{10}.\left(2+5\right)}{1+2^{10}.\left(2.3+1\right)}\)
\(=\dfrac{2^{10}.7}{2^{10}.7+1}=\dfrac{7168}{7169}\)
Chúc bạn học tốt!!!
\(\dfrac{2^{20}.27^3+30.4^9.9^4}{6^9.4^5+12^{10}}=\dfrac{2^{20}.3^9+2.3.5.2^{18}.3^8}{2^9.3^9+2^{20}.3^{10}}=\dfrac{2^{20}.3^9+5.2^{19}.3^9}{2^9.3^9+2^{20}.3^{10}}=\dfrac{2^9.3^9\left(2^{11}+5.2^{10}\right)}{2^9.3^9\left(1+2^{11}.3\right)}\)
\(\dfrac{2^{11}+5.2^{10}}{1+2^{11}.3}\)
tới bc này chiu :))
\(\frac{5,4:0,4\times1420+4,5\times780\times3}{3+6+9+12+15+18+21+24+27}\)
\(=\frac{13,5\times1420+13,5\times780}{\left(3+27\right)+\left(6+24\right)+\left(9+21\right)+\left(12+18\right)+15}\)
\(=\frac{13,5\times\left(1420+780\right)}{30+30+30+30+15}\)
\(=\frac{13,5\times2200}{135}\)
\(=\frac{29700}{135}\)
\(=220\)
Ta có:
\(\frac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}=\frac{2^{20}\cdot\left[3^3\right]^3+2\cdot3\cdot5\cdot\left[2^2\right]^9\cdot\left[3^2\right]^4}{2^9\cdot3^9\cdot\left[2^2\right]^5+3^{10}\cdot\left[2^2\right]^{10}}=\frac{2^{20}\cdot3^{3\cdot3}+2\cdot3\cdot5\cdot2^{2\cdot9}\cdot3^{2\cdot4}}{2^9\cdot3^9\cdot2^{2\cdot5}+3^{10}\cdot2^{2\cdot10}}\)
\(=\frac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot2^{20}}=\frac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}=\frac{2^{19}\cdot3^9\left[2+5\right]}{2^{19}\cdot3^9\left[1+3\cdot2\right]}=\frac{2+5}{1+6}=\frac{7}{7}=1\)
\(P=\dfrac{2^{20}\cdot3^{10}+2^9\cdot2^{12}\cdot3^9}{15\cdot2^{18}\cdot3^8-2^{19}\cdot3^9}=\dfrac{2^{20}\cdot3^9\left(3+2\right)}{2^{18}\cdot3^9\cdot5-2^{19}\cdot3^9}\)
\(=\dfrac{2^{20}\cdot3^9\cdot5}{2^{18}\cdot3^9\left(5-2\right)}=4\cdot\dfrac{5}{3}=\dfrac{20}{3}\)