K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

A = 1.2.4 + 2.3.5 + ... + n(n+1)(n+3)

A = 1.2.(3+1) + 2.3.(4+1) + ... + n(n+1)[(n+2)+1]

A = [1.2.3 + 2.3.4 + ... + n(n+1)(n+2)] + [1.2 + 2.3 + ... + n(n+1)]

Đặt B = 1.2.3 + 2.3.4 + ... + n(n+1)(n+2)

4B = 1.2.3.(4-0) + 2.3.4.(5-1) + ... + n(n+1)(n+2)[(n+3)-(n-1)]

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + n(n+1)(n+2)(n+3) - (n-1)n(n+1)(n+2)

4B = n(n+1)(n+2)(n+3)

B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Đặt C = 1.2 + 2.3 + ... + n(n+1)

3C = 1.2.(3-0) + 2.3.(4-1) + ... + n(n+1)[(n+2)-(n-1)]

3C = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + ... + n(n+1)(n+2) - (n-1)n(n+1)

3C = n(n+1)(n+2)

C = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

A = B + C = \(n\left(n+1\right)\left(n+2\right)\left(\frac{n+3}{4}+\frac{1}{3}\right)\)

\(=n\left(n+1\right)\left(n+2\right)\frac{3n+13}{12}\)

8 tháng 1 2017

tại sao bạn lại rút gọn được A = n(n+1)(n+2)(n+3/4+1/3) vậy

25 tháng 9 2015

Nhân cả biểu thức với 3 nhé bn

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

1.

Trước hết bạn nhớ công thức:

$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)

Áp vào bài:

\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)

\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)

\(=1.\frac{1}{3}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

2.

\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)

\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)

\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)

\(=x+a\) 

a) 

 \(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)

b) 

   \(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)