1. CMR tích của 4 số tự nhiên liên tiếp cộng 1 là 1 số chính phương
2. cho a,b,c khác 0 và đôi một khác nhau thỏa mãn a+b+c=0. CMR a3 +b3 +c3 + a2b + b2c+c2a=0
3. CMR phân số :\(\frac{n^5+n+1}{n^4+n^2+1}\) không phải là phân số tối giản với n là số nguyên dương
Bài 1:
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3\(\left(a;a+1;a+2;a+3\in N\right)\)
Theo bài ra ta có:
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt \(a^2+3a+1=t\) khi đó ta có:
\(\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
Vậy \(t^2\) là số chính phương suy ra \(\left(a^2+3a+1\right)^2\) là số chính phương ta có điều phải chứng minh
bài 2: ý tưởng là thay vào
bài 3: gọi UCLN(...)=d
Xét hiệu...