cho tam giác đều ABM ở phía ngoài tam giác dựng tam giác đều AMD.ở phía ngoài tam giác AMD dựng tam giác đều MDC.CHỨNG MINH tứ giác ABCD là hình thang cân, CM BO=2OD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tứ giác ABCD định hướng âm. Gọi \(f\) là phép quay vec tơ theo góc \(\frac{\pi}{3}\) ta có
\(\overrightarrow{EG}=\overrightarrow{AG}-\overrightarrow{AE}=\overrightarrow{AB}+\overrightarrow{BG}-\overrightarrow{AE}\)
suy ra \(f\left(\overrightarrow{EG}\right)=f\left(\overrightarrow{AB}\right)+f\left(\overrightarrow{BG}\right)-f\left(\overrightarrow{AE}\right)\)
\(=\overrightarrow{AE}+\overrightarrow{BC}-\overrightarrow{BE}\)
\(=\overrightarrow{AC}\)
Tương tự ta cũng chứng minh được \(f\left(\overrightarrow{HF}\right)=\overrightarrow{AC}\)
Từ đó suy ra \(\overrightarrow{EG}=\overrightarrow{HF}\)
Do đó tứ giác EGFH là hình bình hành
Xét tam giác ABD và tam giác FBC có:
AB=FB ( cạnh tam giác đều FAB)
DB=BC ( cạnh tam giác đều DBC)
góc ABD = góc FBC ( cùng bằng góc ABC + 60 độ)
Suy ra tam giác ABD = tam giác FBC (C.G.C)
=> FC=AD
Do góc DAM = góc AMB=600, mà 2 góc này slt nên AD//BC=> ABCD là hình thang
Mà góc ABC= góc DCB=600 nên ABCD là hình thang cân.
Còn O là điểm gì thì mik ko bt
Do AM=AB, AD//BC nên ABCM là hình thoi.
Ma AC và BM là 2 đường chéo nên OAM=OAB=600/2=300.
Tương tự ta cx có OBM=OBC=600/2=300.
=> ABO=600+300=900
Do Tam giác ABO có B=900 và A=300 nên đây là tam giác nửa đều.
=>AO=2OB. (1)
Mà O là giao điểm 2 đg chéo hình thg cân nên OA=OD. (2)
Từ (1),(2), ta có OD=2OB.
(DO MÌNH TỰ GIẢI NÊN CÓ GÌ SAI BN SỬA LẠI NHA!)