Tìm cặp số nguyên x ,y
x2 -2xy+ 5y2 = y-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(2+5y^2=6\)
\(5y^2=6-2\)
\(5y^2=4\)
\(5y^2=2^2\)
\(\Rightarrow5y=2\)
\(y=2\div5\)
\(y=\dfrac{2}{5}\)
Vậy \(y=\dfrac{2}{5}\)
`(x - 1)^2 + 5y^2 = 6`
`<=>` $\left[\begin{matrix} (x - 1)^2 = 0\\ (x - 1)^2 = 2\end{matrix}\right.$
`<=>` $\left[\begin{matrix} y = -1; 1\\ y = -1; 1\end{matrix}\right.$\
`<=>` $\left[\begin{matrix} x = 0 ; y = -1; 1\\ x = 2 ; y = -1; 1\end{matrix}\right.$
Sử dụng phương pháp Delta cho bài toán này:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)
Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.
Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)
\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).
Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Vậy....
Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:
\(2x^2+5y^2-4\left(xy+1\right)=7\)
\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)
\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)
Đến đây ta xét các trường hợp:
Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)
Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)
Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)
Vậy...
a: =>(x-1)^2=1 và 5y^2=5
=>(x-1)^2=1 và y^2=1
=>\(y\in\left\{1;-1\right\};x\in\left\{2;0\right\}\)
b: Gọi số cần tìm là x
x chia 11 dư 4 nên x-4 chia hết cho 11
=>x+18 chia hết cho 11
x chia 13 dư 8
=>x-8 chia hết cho 13
=>x+18 chia hết cho 13
=>x+18 chia hết cho 143
=>x chia 143 dư 18
\(\Leftrightarrow x^2-2xy+5y^2-y+1=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4y^2-y+\dfrac{1}{16}\right)+\dfrac{15}{16}=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2y-\dfrac{1}{4}\right)^2+\dfrac{15}{16}=0\) (vô nghiệm)
Ko tồn tại x; y thỏa mãn pt