Chứng minh: -7+ (-7)2+....+ (-7)2007 chia hết cho 43
A= 22011969 + 11969220 + 69220119 chia hết cho 102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
Ta có:
a - 3b + 1 chia hết cho 7.
Mà ta có: 42a + 14b + 14 chia hết cho 7.
Do đó ( 42a + 14 b + 14 ) + ( ( a - 3b + 1 ) = 43a +11b + 15 chia hết cho 7. ( đpcm)
7a - 21b + 5 = 7 ( a - 3b ) + 5 không chia hết cho 7.
Vậy 7a - 21b + 5 và 7 là hai số nguyên tố cùng nhau.
Vì ( 7a - 2b + 5 ) ( a - 3b + 1 ) chia hết cho 7 nên a - 3b + 1 chia hết cho 7.
Vì 42a + 14b + 14 chia hết cho 7 nên ( 42a + 14b + 14 ) + ( a - 3b + 1 ) chia hết cho 7.
Vậy 43a + 11b + 15 chia hết cho 7.
Ta có : A = -7 + (-7)2 + (-7)3 + ....... + (-7)2007
=> -7A = (-7)2 + (-7)3 + ....... + (-7)2008
=> -7A - A = (-7)2008 - (-7)
=> -8A = (-7)2008 + 7
=> A = .........................
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6+...+\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=\left(-7\right)\left(1+-7+7^2\right)+\left(-7\right)^4\left(1+-7+7^2\right)+...+\left(-7\right)^{2005}\left(1+-7+7^2\right)\)
\(A=\left(-7\right)\cdot43+\left(-7\right)^4\cdot43+...+\left(-7\right)^{2005}\cdot43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2008}\right]⋮43\left(đpcm\right)\)
\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.
A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)
A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)
A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm