K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2021

ĐKXĐ: ...

\(\dfrac{5}{x^2}+1+\dfrac{2x}{\sqrt{5+x^2}}=3\)

\(\Leftrightarrow\dfrac{5+x^2}{x^2}+\dfrac{2x}{\sqrt{5+x^2}}=3\)

Đặt \(\dfrac{x}{\sqrt{5+x^2}}=t\)

\(\Rightarrow\dfrac{1}{t^2}+2t=3\)

\(\Rightarrow2t^3-3t^2+1=0\)

\(\Rightarrow\left(t-1\right)^2\left(2t+1\right)=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{5+x^2}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{5+x^2}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x^2}{5+x^2}=1\left(vn\right)\\\dfrac{x^2}{5+x^2}=\dfrac{1}{4}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow x=-\sqrt{\dfrac{5}{3}}\)

23 tháng 7 2021

a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)

⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)

Phương trình vô nghiệm

b, x = \(\dfrac{8}{125}\)

11 tháng 6 2018

a/ \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)

\(\Leftrightarrow x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=4\)

\(\Leftrightarrow x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}=4\)

Làm nốt

11 tháng 6 2018

b/ \(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

22 tháng 8 2018

b) ta có pt \(\sqrt{25-x^2}-\sqrt{9-x^2}=2\)

Đặt \(\sqrt{25-x^2}=a;\sqrt{9-x^2}=b\left(a,b\ge0\right)\Rightarrow a-b=2\)

\(a^2-b^2=25-x^2-9+x^2=16\Leftrightarrow\left(a-b\right)\left(a+b\right)=16\Leftrightarrow a+b=8\)

ta có a-b=2;a+b=8=> a=5;b=3

22 tháng 8 2018

a) ta có pt \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\Leftrightarrow x-\dfrac{4}{x}+\sqrt{2x-\dfrac{5}{x}}-\sqrt{x-\dfrac{1}{x}}=0\)

đặt \(\sqrt{2x-\dfrac{5}{x}}=a;\sqrt{x-\dfrac{1}{x}}=b\Rightarrow a^2-b^2=2x-\dfrac{5}{x}-x+\dfrac{1}{x}=x-\dfrac{4}{x}\)

nên pt \(\Leftrightarrow a^2-b^2+a-b=0\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

a) Ta có: \(\sqrt{49\left(x^2-2x+1\right)}-35=0\)

\(\Leftrightarrow7\left|x-1\right|=35\)

\(\Leftrightarrow\left|x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

b)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

Ta có: \(\sqrt{x^2-9}-5\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{x-3}=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=28\left(nhận\right)\end{matrix}\right.\)

c) ĐKXĐ: \(x\ge0\)

Ta có: \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(\Leftrightarrow x-1=x+\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-6=-1\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25(nhận)

8 tháng 7 2021

 Em cảm ơn ạ ❤️❤️❤️

NV
26 tháng 2 2023

a.

\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)

\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)

\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)

\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)

\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2023

b.

ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)

\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)

\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)

\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)

\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)