Cho Δ ABC cân tại A , lấy điểm E thuộc cạnh AB , điểm M thuộc cạnh AC sao cho BE = CM
a) C/m Δ AEM cân
b) C/m góc ABM = góc ACE
c) C/m EM // BC
d) Gọi D là trung điểm của MC , trên tia BD lấy điểm N sao cho D là trung điểm của BN . C/m NE // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AB=AC và BE=CM
=> AB - BE=AC - CM
=> AE = AM
=> tam giác AEM cân tại A
b) Xét ΔABM và ΔACE có:
+ AB=AC
+ góc A chung
+ AM = AE
=> ΔABM = ΔACE (c-g-c)
=> góc ABM = góc ACE
c) Do tam giác ABC cân tại A và AEM cân tại A
=> góc AEM = góc AME = góc ABC = góc ACB
=> EM // BC
d) Xét ΔDBC và ΔDNM có:
+ DB = DN
+ góc BDC = góc NDM (đối đỉnh)
+ DC = DM
=> ΔDBC = ΔDNM
=> góc DBC = góc DNM
=> MN // BC
=> EM trùng với MN
=> EN // BC
https://olm.vn/hoi-dap/detail/67684739146.html
a/ Xét ΔABM;ΔACMΔABM;ΔACM có :
⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC
⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)
b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :
⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC
⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)
⇔BH=CK
a: Ta có: AE+EB=AB
AM+MC=AC
mà AB=AC
và EB=MC
nên AE=AM
hay ΔAEM cân tại A
b: Xét ΔABM và ΔACE có
AB=AC
\(\widehat{BAM}\) chung
AM=AE
Do đó: ΔABM=ΔACE
Suy ra: \(\widehat{ABM}=\widehat{ACE}\)
c: XétΔABC có AE/AB=AM/AC
nên EM//BC