Ba số nguyên dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)
Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)
Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)
Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương
Đặt \(b-c=n^2;a-c=m^2\)
\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương
Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))
Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)
\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)
\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)
\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)
Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)
\(x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{1}{\frac{7}{3}}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{1}{2+\frac{1}{3}}\Leftrightarrow x=1;y=2;z=3\)
Ta có: \(xyz=1\)=>\(xy=\frac{1}{z}\)
Theo BĐT cosy, ta có: \(x+y+1\ge3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{3\sqrt[3]{z}}\)
tương tự:\(y+z+1\ge3\sqrt[3]{\frac{1}{x}}=\frac{3}{\sqrt[3]{x}}\)
\(z+x+1\ge3\sqrt[3]{\frac{1}{y}}=\frac{3}{\sqrt[3]{y}}\)
=> \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{x}}{3}+\frac{\sqrt[3]{y}}{3}=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
Áp dụng BĐT trên lần nữa ta được \(Q\le\frac{3\sqrt[3]{\sqrt[3]{xyz}}}{3}=\frac{3}{3}=1\)
Vậy DTLN của Q=1
dấu "=" xảy ra khi x=y=z=1
Ta có: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=2\) (Như đề là lớn hơn hoặc bằng 2)
\(\Leftrightarrow\frac{1}{x+1}=2-\frac{1}{y+1}-\frac{1}{z+1}\)
\(=\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) (Vì x;y;z là ba số dương nên Áp dụng BĐT Côsi)
\(\Leftrightarrow\frac{1}{x+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}\left(1\right)\)
Chứng minh tương tự ta được: \(\frac{1}{y+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\) (2)
\(\frac{1}{z+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\) (3)
Nhân (1);(2);(3) ta có: \(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right)\left(z+1\right)}}.\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}.\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8\sqrt{\left(xyz\right)^2}}{\sqrt{\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2}}\)
Với x;y;z > 0 ta có: \(1\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}.\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{x}{x+1}=\frac{y}{y+1}\\\frac{y}{y+1}=\frac{z}{z+1}\\\frac{z}{z+1}=\frac{x}{x+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow x=y=z}\)
Vậy GTLN của xyz = 1/8 khi và chỉ khi x=y=z
P/S: Bài giải của em còn nhiều sai sót, mong mọi người thông cảm, góp ý
Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1
=> bất đẳng thức luôn xảy ra dấu bằng
Sửa đề 1 chút cho z; y; x là các số dương
Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)
=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)
Tương tự:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)
\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z = 1
Không mất tính tổng quát ta giả sử x\(\le y\le\) z
=> 1/x \(\ge\)1/y \(\ge\) 1/z
=> 1/x + 1/x + 1/x \(\ge\) 1/x + 1/y + 1/z = 1
=> 3/x \(\ge\) 3/3
=> x \(\le3\) (1)
Có: 1/x < 1 do 1/x + 1/y + 1/z = 1
=> x > 1 (2)
Từ (1) và (2) mà x nguyên dương => x = 2 hoặc x = 3
+ Nếu x = 2 thì 1/y + 1/z = 1 - 1/2 = 1/2
Có: 1/y + 1/y \(\ge\) 1/y + 1/z = 1/2
=> 2/y \(\ge\)2/4
=> y \(\le\) 4 (3)
Lại có: 1/y < 1/2 do 1/y + 1/z = 1/2
=> y > 2 (4)
Từ (3) và (4) mà y nguyên dương nên y = 3 hoặc y = 4
Giá trị tương ứng của z là 6; 4
Tương tự như vậy với x = 3 ta tìm được y = z = 3
Vậy ...