K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)

<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)

<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\frac{x+4}{x-4}\)

b) Thay x=\(\frac{-3}{8}\) vào M:

M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)

c)Hình như sai!

d)

28 tháng 11 2018

a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)

\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)

\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)

b,

Để M = \(\frac{1}{3}\)

\(\Rightarrow x-4=3x+12\)

\(\Rightarrow2x=16\Leftrightarrow x=8\)

\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)

\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)

28 tháng 11 2018

\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)

Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .

23 tháng 7 2019

â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\) 

\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)  

\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)

23 tháng 7 2019

a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)

\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)

\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)

\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)

\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2016

Lời giải:

Đặt \((x,y,z)=(2a,b,2c)\Rightarrow a,b,c\in\left [ 0;1 \right ]\)

Bằng cách dự đoán điểm rơi, ta sẽ đi chứng minh $P\leq 2$, tức là CM:

\(P=(1-a)(1-b)(2-c)+\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\leq 2\). Thật vậy.

AM-GM cho bộ $1-a,1-b,a+b+1$ dương, ta có:

\(3=1-a+1-b+a+b+1\geq 3\sqrt[3]{(1-a)(1-b)(a+b+1)}\)

\(\Rightarrow (1-a)(1-b)(a+b+1)\leq 1\rightarrow (1-a)(1-b)(2-c)\leq \frac{2-c}{a+b+1}\)

Cần CM: \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{2}{a+b+1}\leq 2\)\(\Leftrightarrow \frac{a}{b+c+1}+\frac{b}{a+c+1}\leq \frac{2a+2b}{a+b+1}\)

Hiển nhiên đúng vì \(b+c+1,a+c+1>\frac{a+b+1}{2}\forall a,b,c\in [0;1]\)

Vậy \(P_{max}=2\Leftrightarrow a=b=0;c\in [0;1]\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

Lúc đầu còn nghĩ nhầm đề tính mãi không ra @@

26 tháng 4 2019

\(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\) ĐKXĐ : \(x\ne\pm2\)

\(A=\left(\frac{2x}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4}{x+2}+\frac{5-x^2}{x+2}\right)\)

\(A=\left(\frac{2x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+5-x^2}{x+2}\right)\)

\(A=\frac{x-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1}\)

\(A=\frac{x-6}{x-2}\)

26 tháng 4 2019

b, ta có \(/\frac{1}{2}/=\frac{1}{2}=\frac{-1}{2}\)

TH1 : Thay x = 1/2 vào A 

.....

Th2 : Thay x = -1/2 vào A :

... 

Bn tự tính vào kết luận 

3 tháng 11 2017

a) \(x\ne2;-2;-4\)

b) và c) thì bạn rút gọn M rồi tính

4 tháng 11 2017

cách nhân ntn ạ