Cho M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\left(\frac{x^2+8x+16}{32}\right)\)
a) Tìm x để giá trị của biểu thức bằng 0
b) Tính M biết \(x=\frac{-3}{8}\)
c) Tìm \(x\in Z\) để \(M\in Z\)
d) tìm GTLN của K biết \(K=\frac{M.3}{x^2+4x+24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(M=\left(\frac{4}{x-4}-\frac{4}{x+4}\right).\frac{x^2+8x+16}{32}\)
\(M=\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\right).\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}.\frac{\left(x+4\right)^2}{32}\)
\(M=\frac{32\left(x+4\right)^2}{32\left(x+4\right)\left(x-4\right)}=\frac{x+4}{x-4}\)
b,
Để M = \(\frac{1}{3}\)
\(\Rightarrow x-4=3x+12\)
\(\Rightarrow2x=16\Leftrightarrow x=8\)
\(c,\)\(\frac{x+4}{x-4}=\frac{x-4+8}{x-4}\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left(1;-1;2;-2;4;-4;8;-8\right)\)
\(\Rightarrow x-4\in\left(5;3;6;2;8;0;12;-4\right)\)
Vậy để M thuộc Z thì x phải thỏa mãn các điều kiện trên .
â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)
\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)
a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)
Lời giải:
Đặt \((x,y,z)=(2a,b,2c)\Rightarrow a,b,c\in\left [ 0;1 \right ]\)
Bằng cách dự đoán điểm rơi, ta sẽ đi chứng minh $P\leq 2$, tức là CM:
\(P=(1-a)(1-b)(2-c)+\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\leq 2\). Thật vậy.
AM-GM cho bộ $1-a,1-b,a+b+1$ dương, ta có:
\(3=1-a+1-b+a+b+1\geq 3\sqrt[3]{(1-a)(1-b)(a+b+1)}\)
\(\Rightarrow (1-a)(1-b)(a+b+1)\leq 1\rightarrow (1-a)(1-b)(2-c)\leq \frac{2-c}{a+b+1}\)
Cần CM: \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{2}{a+b+1}\leq 2\)\(\Leftrightarrow \frac{a}{b+c+1}+\frac{b}{a+c+1}\leq \frac{2a+2b}{a+b+1}\)
Hiển nhiên đúng vì \(b+c+1,a+c+1>\frac{a+b+1}{2}\forall a,b,c\in [0;1]\)
Vậy \(P_{max}=2\Leftrightarrow a=b=0;c\in [0;1]\)
\(A=\left(\frac{2x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right):\left(x-2+\frac{5-x^2}{x+2}\right)\) ĐKXĐ : \(x\ne\pm2\)
\(A=\left(\frac{2x}{\left(x+2\right)\left(x-2\right)}-\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4}{x+2}+\frac{5-x^2}{x+2}\right)\)
\(A=\left(\frac{2x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(\frac{x^2-4+5-x^2}{x+2}\right)\)
\(A=\frac{x-6}{\left(x+2\right)\left(x-2\right)}.\frac{x+2}{1}\)
\(A=\frac{x-6}{x-2}\)
Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)
<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)
<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)
<=>M=\(\frac{x+4}{x-4}\)
b) Thay x=\(\frac{-3}{8}\) vào M:
M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)
c)Hình như sai!
d)