K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Nguyễn Việt Lâm; Nguyễn Lê Phước Thịnh giúp vs!

NV
27 tháng 12 2020

Gọi \(d=ƯC\left(n^2+4;n+5\right)\)

\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)

\(\Rightarrow5n-4⋮d\)

\(\Rightarrow5\left(n+5\right)-29⋮d\)

\(\Rightarrow29⋮d\)

\(\Rightarrow d=\left\{1;29\right\}\)

Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)

\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)

\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)

\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn

18 tháng 2 2019

sửa \(n^2+5\)thành \(n+5\)nha các bạn

10 tháng 2 2020

Gọi ƯCLN( n^2 + 4 ; n^2 + 5 ) = d ( d là số tự nhiên )

Suy ra : \(n^2+4⋮d\)

             \(n^2+5⋮d\)

Nên \(\left(n^2+5\right)-\left(n^2+4\right)=1\)

\(\Rightarrow1⋮d\)\(\Leftrightarrow d=\left\{1;-1\right\}\)

Vậy phân số trên luôn là phân số tối giản nên không có n thỏa mãn A không tối giản

Giả sử: d=(m+n,m2+n2)d=(m+n,m2+n2)

⇒⎧⎨⎩m+n⋮dm2+n2⋮d⇒{m+n⋮dm2+n2⋮d

⇒⎧⎨⎩m+n⋮d(m+n)2−2mn⋮d⇒{m+n⋮d(m+n)2−2mn⋮d

⇒⎧⎨⎩m+n⋮d2mn⋮d⇒{m+n⋮d2mn⋮d

⇒⎧⎨⎩2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d⇒{2m(m+n)−2mn⋮d2n(m+n)−2mn⋮d

⇒⎧⎨⎩2m2⋮d2n2⋮d⇒{2m2⋮d2n2⋮d

d|(2m2,2n2)=2(m2,n2)=2d|(2m2,2n2)=2(m2,n2)=2

⇒d=1⇒d=1 hoặc d=2d=2

- Nếu m,nm,n cùng lẻ thì d=2d=2

- Nếu m,nm,n khác tính chẵn lẻ thì d=1

24 tháng 3 2015

co 87 so nhung cach lam thi ko biet

25 tháng 3 2015

ta có : 1 < n < 2000

xét (n^2+7)/(n+4) = (n^2-16+23)/(n+4) = n-4+23/(n+4)

để (n^2+7)/(n+4) ko là phân số tối giản thì 23/(n+4) phải ko là phân số tối giản

suy ra n+4 phải chia hết cho 23

suy ra n = 23*k-4       (k thuộc N*)

thay vào phương trình đầu ta có:

1 < 23*k-4 < 2000   tương đương

5 < 23*k < 2004       tương đương

5/23 < k < 2004/23   tương đương

0,23 < k < 87,13

lấy giá trị N* lớn nhất của k ta có số số tự nhiên n là 87

6 tháng 4 2017

Câu 3 : 

b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1 

=> 2n + 8 chia hết cho 2n - 1  

mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1 

=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }

=> 2n - 1 \(\in\) { 1 ,3 , 9 }

=> 2n\(\in\){ 2 , 4 ,10}

=> n\(\in\){ 1, 2 ,5 }

=> P\(\in\){ 5 , 2 , 1 }

Vì P là nguyên tố nên P\(\in\){ 5,2}

vậy n\(\in\){ 1 , 2 }

Câu 4 :