1) chứng minh định lý: nếu một tam giác có hai góc ở đấy bằng nhau thì tam giác đó là tam giác cân
2) chứng minh định lý: nếu một tam giác cân có một góc bằng 600 thì tam giác đó là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
mà cạnh đối diện của góc B là cạnh AC
và cạnh đối diện của góc C là cạnh AB
nên AB=AC
Ta có hình vẽ:
Vẽ AH là phân giác của BAC => A1 = A2 (*)
Δ CAH có: C + A1 + H1 = 180o (1)
Δ BAH có: B + A2 + H2 = 180o (2)
Từ (1); (2) kết hợp với (*) và C = B (gt) => H1 = H2
Xét Δ CAH và Δ BAH có:
A1 = A2 (cmt)
AH là cạnh chung
H1 = H2 (cmt)
Do đó, Δ CAH = Δ BAH (g.c.g)
=> AC = AB (2 cạnh tương ứng)
Như vậy, Δ ABC là tam giác cân tại A (đpcm)
giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G
=> G là trong tâm của tam giác
-> GB=BM ; GC = CN
mà BM=CN (gt) nên GB = GC
=> tam giác GBC cân tại G
Do đó tam giác BCN=tam giác CBM vì:
BC là cạnh chung
CN = BM (gt)
=> tam giác ABC cân tại A
xét tam giác ABD và ACE :
E=D (=90o)
CE=BD (gt)
A:chung
suy ra tam giác ABD =ACE(ch_gn)
suy ra góc B=C(t/ư)
xét tam giác EIB&DIC:
E=D(=90o)
IE=ID
B=C
suy ra tam giácEIB=DIC
suy ra IB=IC
suy ra tam giác BIC cân tại I, suy ra B=C
suy ra:đpcm
-Tam giác ABC cân tại A có BE và CD là 2 đtt
=> AB=AC => AE=AD
Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC
=> ABE=ACD (c g c)
=>BE=CD
-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G
=> EG=DG , BG=CG
\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG
=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)
=>BD=EC
Xét \(\Delta EBC\) và \(\Delta DCB\) có: BE=CD , BC chung, BD=EC
=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)
=>\(\widehat{EBC}=\widehat{DCB}\)
=> TgABC cân tại A (đpcm)
Xét hai tam giác vuông EBC và FCB có:
BC (cạnh huyền chung)
BE = CF
Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)
=> Góc FBC = góc ECB
hay ∆ABC cân tại A
đăng từng câu thui chứ!!!!!
đăng mấy câu thì kệ họ đâu liên quan j tới ông mà ns