K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Ít điều kiện thế này làm sao đc

Làm đc mà bn

Có : Tam giác ABC vuông tại A

        MB=MC(GT)

-> AM=1/2BC ( t/c đường trung tuyến ứng với cạnh huyền trong tgiac vuông )

#Hoctot

7 tháng 1 2021

Trên tia đối của tia AM lấy D sao cho AM=MD chứng minh tam giác BMA =tam giác CMD suy ra BA=CD và góc BAM=góc MDC mà 2 góc trên nằm ở vị trí so le trong nên AB song song với CD mà AB vuông góc với AC suy ra CD vuông góc với AC chứng minh tam giác BCA=tam giác DAC suy ra BC=AD mà AM=1/2AD suy ra AM=1/2BC

2 tháng 1 2016

kẻ tia đối của tia MA và bằng nó là ra

2 tháng 1 2016

Gọi H là trung điểm của AC. Ta chứng minh được: MH là đường trung bình của tam giác ABC. Suy ra: MH song song với AB. => MH vuông góc với AC ( vì AB vuông góc với AC)

Xét tam giác AMC có MH vừa là đường cao, vừa là đường trung tuyến ứng với AC nên tam giác Amc cân tại M. => AM=MC (1)

Vì tam giác AMC cân tại M nên góc MAC = góc MCA. Ta có: MAC+BAM=90 và ACM+ABC=90 mà MAC=MCA ( chứng minh trên).

=> BAM=ABC => tam giác ABM cân tại M => MA=MB (2)

Từ (1) và (2) => AM=1/2BC

1 tháng 8 2019

#)Giải : (Hình tự vẽ lười lắm òi)

Vì \(AB//CD\Rightarrow\widehat{BAC}+\widehat{ACD}=180^o=90^o+\widehat{ACD}=180^o\Rightarrow\widehat{ACD}=90^o\)

Ta có : \(\widehat{BAC}=\widehat{ACD}\)

\(AB=CD\left(c/m\Delta ABM=\Delta CDM\right)\)

AC là cạnh chung 

\(\Rightarrow\Delta ABC=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow AD=BC\)

Mà \(AM=\frac{1}{2}AD\Rightarrow AM=\frac{1}{2}BC\)

1 tháng 8 2019

A B C D M

M là trung điểm AD => AM = 1/2 AD (1)

                                và AM = MD

Xét ∆AMB và ∆AMC có :

AM = MD (cmt)

\(\widehat{AMB}=\widehat{AMC}\)( đối đỉnh)

MB = MC (M là trung điểm BC)

do đó ∆AMB = ∆AMC (c-g-c)

=> AB = AC và \(\widehat{B_1}=\widehat{C_1}\)

Mà \(\widehat{B_1};\widehat{C_1}\)ở vị trí so le trong

=> AB // CD

=> \(\widehat{BAC}+\widehat{ACD}=180^o\)( trong cùng phía)

Mà \(\widehat{BAC}=90^o\Rightarrow\widehat{ACD}=90^o\Rightarrow\widehat{BAC}=\widehat{ACD}\)

Xét ∆ABC và ∆CDA có :

AB = AC (cmt)

\(\widehat{BAC}=\widehat{ACD}\)

AC chung

do đó : ∆ABC = ∆CDA

=> BC = AD (2)

Từ (1),(2) => đpcm