K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

Theo đề bài, ta có:

x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5

=> (x + y + z)(x + y + z) = -5 + 9 + 5 = 9

=> (x + y + z)= 9

=> x + y + z \(\in\){3; -3}

Với x + y + z = 3, ta có:

   x = -5 : 3 = \(\frac{-5}{3}\)

   y = 9 : 3 = 3

   z = 5 : 3 = \(\frac{5}{3}\)

Với x + y + z = -3, ta có:

   x = -5 : (-3) = \(\frac{5}{3}\)

   y = 9 : (-3) = -3

   z = 5 : (-3) = \(\frac{-5}{3}\)

Vậy x = \(\frac{-5}{3}\); y = 3 ; z = \(\frac{5}{3}\) hoặc x = \(\frac{5}{3}\); y = -3 ; z = \(\frac{-5}{3}\).

8 tháng 6 2017

Cộng theo từng vế ta được:
\(\left(x+y+z\right)^2=9\)\(\Rightarrow x+y+z=\pm3\)
Nếu \(x+y+z=3\) thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).
Nếu \(x+y+z=-3\) thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

29 tháng 7 2017

Cộng theo từng vế ta được :

\(\left(x+y+z\right)^2=9\Rightarrow x+y+z=\pm3\)

Nếu \(x+y+z=3\)thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).

Nếu\(x+y+x=-3\)thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

26 tháng 5 2017

\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)

Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3

TH1: x+y+z=-3 

Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3

x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3

TH2: x+y+z=3

Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3

x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3

Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3

26 tháng 5 2017

Theo đề ra ta có:

\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)

\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)

1 tháng 7 2016

ghi câu hỏi rõ bạn ơi

1 tháng 7 2016

Bài 1 : Tính nhanh

a) 16.(382)38(161)16.(38−2)−38(16−1)

b) (41).(59+2)+59(412)(−41).(59+2)+59(41−2)

Bài 2 :

Tìm các số x ; y ; x biết rằng :

 

x + y = 2 ;  y + z = 3 ;  z + x = -5

Bài 3 : Tìm x ; y  Z biết rằng :

( y + 1 ) . xy - 1 ) = 3

22 tháng 10 2021

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm

10 tháng 8 2016

\(x=\frac{-5}{3};y=3;z=\frac{5}{3}\)

k mk nha

25 tháng 3 2016

Từ hệ thức :

\(y=tx+\left(1-t\right)z\)

Bất đẳng thức 

\(\frac{\left|z\right|-\left|y\right|}{\left|z-y\right|}\ge\frac{\left|z\right|-\left|x\right|}{\left|z-x\right|}\)

Trở thành :

\(\left|z\right|-\left|y\right|\ge t\left(\left|z\right|-\left|x\right|\right)\)

hay 

\(\left|y\right|\le\left(1-t\right)\left|z\right|+t\left|x\right|\)

Vận dụng bất đẳng thức tam giác cho 

\(y=\left(1-t\right)x+tx\) ta có kết quả

Bất đẳng thức thứ hai, được chứng minh tương tự bởi

\(y=tx+\left(1-t\right)z\)

tương đương với :

\(y-x=\left(1-t\right)\left(z-x\right)\)