cho tam giacs ABC(AB<AC). Tia phân giác của góc A cắt đường trung trực của BC tại I. Kẻ IH vuông góc AB tại H. IK vuông góc AC tại K.
CM:BH=CK
CM:AHIK nội tiếp đường tròn và tìm đường tròn đó
GIUP VS GIUP VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=20cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
b: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
AD=AE
Do đó: ΔADI=ΔAEI
Suy ra: \(\widehat{DAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc BAC
c: Xét ΔADE có AD=AE
nên ΔADE cân tại A
AB = AC suy ra tam giác ABC cân tại A
Biết BM = CM = 6 / 2 = 3 ( M là trung điểm của BC )
Tam giác ABM vuông tại A
AM = AB2 - BM2
AM = 42 - 32
AM = 5 ( đl Pytago )
Cho tam giacs ABC có AB =10 cm, BC=12cm. D là trung điểm của AB. Vẽ DH vuông góc với AC và DH = 4 cm
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC
cho tam giacs ABC cân tại A ,trên cạnh BC lấy D,trên tia đối CB lấy E sao cho CE=BD ,C/M AB+AC =AD+A
\(\hept{\begin{cases}\\\end{cases}}a+b+x=^{2_{ }_{ }_{ }_{ }\sqrt{ }\sqrt[]{}\frac{ }{ }hhhhhhhhhhh=fff}\)