BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
2) 3n + 2 và 5n + 2 với n \(\in\) N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(3n+1 ; 4n +1 ) là d
\(\begin{cases}3n+1⋮d\\4n+1⋮d\end{cases}\)
=> 4 ( 3n + 1) - 3 ( 4n + 1 ) ⋮ d
=> 1 ⋮ d
=> d = 1
Vậy .......
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau:
1) 3n + 1 và 4n + 1 với n ∈ N
Gọi d là (3n + 1, 4n+1)
=) 3n+1 chia hết cho d
=) 4n+1 chia hết cho d
Vì 3n+1 là số lẻ mà d là ước của 3n+1 =) d là số lẻ
Ta có: 4(3n+1) - 3(4n+1)
= 12n + 4 - 12n+3
= 1
hay d chia hết cho 1 =) d =1 (đpcm)
do đó : (3n + 1, 4n+1) = 1
Giải:
Gọi \(d=UCLN\left(7n+10;5n+7\right)\)
Ta có:
\(7n+10⋮d\Rightarrow2\left(7n+10\right)⋮d\Rightarrow14n+20⋮d\)
\(5n+7⋮d\Rightarrow3\left(5n+7\right)⋮d\Rightarrow15n+21⋮d\)
\(\Rightarrow15n+21-14n-20⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow d=UCLN\left(7n+10;5n+7\right)=1\)
\(\Rightarrow\) 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
Gọi ƯCLN7n+10 ; 5n+7 là d
Theo đề ra ta có :
\(\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\)
=> \(5\left(7n+10\right)-7\left(5n+7\right)⋮d\)
=> \(45n+50-\left(45n+49\right)⋮d\)
=> 1⋮ d
=> d = 1
Vậy (7n+10 ; 5n + 7 ) = 1
Gọi d thuộc ƯC(3n+2, 5n+3) thì
3(5n+3) - 5(3n+2) chia hết cho d => 1chia hết cho d => d = 1
Vì ƯCLN(3n+2, 5n+3)=1 nên hai số 3n+2 và 5n+3 là hai số nguyên tố cung nhau
Gọi UCLN(3n + 1; 5n +2 ) = d, ta có
3n + 1 chia hết cho d và 5n + 2 chia hết cho d
=> 3( 5n + 2 ) - 5 ( 3n + 1 ) chia hết cho d
=>(15n + 6) - ( 15n + 5 ) chia hết cho d => 1 chia hết cho d
=> d E Ư(1) = { 1 }
=> d = 1
Gọi ƯCLN(3n + 1; 5n +2 ) = d, ta có
3n + 1 chia hết cho d và 5n + 2 chia hết cho d
=> 3( 5n + 2 ) - 5 ( 3n + 1 ) chia hết cho d
=>(15n + 6) - ( 15n + 5 ) chia hết cho d => 1 chia hết cho d
=> d E Ư(1) = { 1 }
=> d = 1
\(a,d=ƯCLN\left(5n+2;2n+1\right)\\ \Rightarrow2\left(5n+2\right)⋮d;5\left(2n+1\right)⋮d\\ \Rightarrow\left[5\left(2n+1\right)-2\left(5n+2\right)\right]⋮d\\ \Rightarrow-1⋮d\Rightarrow d=1\)
Suy ra ĐPCM
Cmtt với c,d
5(3n+2)=15n+10
3(5n+3)=15n+9
hai số 15n+9 và 15n+10 là hai số tự nhiên liên tiếp nên ng.tố cùng nhau
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
Gọi UCLN(3n+2,5n+3) la d
=>3n+2 chia hết cho d=>15n+10 chia hết cho d
=>5n+3 chia hết cho d=>15n+9 chia hết cho d
=>(15n+10)-(15n+9) chia hết cho d
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy 3n+2 và 5n+3 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(3n+1 ; 5n + 2 ) là d
=> \(\begin{cases}3n+2⋮d\\5n+2⋮d\end{cases}\)
=> 5 ( 3n + 2 ) - 3 ( 5n + 2 ) ⋮ d
=> 2 ⋮ d
Mà chưa xác định được n chẵn hay lẻ
=> Đề sai
Nhầm nha, Đề sai ồi,... Đề đúng:
3n + 2 và 5n + 3 với n ∈ N