Hai ô tô cùng đi từ A đến B. Vận tốc xe thứ nhất bằng 60% vận tốc xe thứ hai. Thời gian xe thứ nhất đi từ A đến B nhiều hơn xe thứ hai là 4 giờ. Tính thời gian đi của mỗi xe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian xe thứ nhất đi hết quãng đường AB là a.
Thời gian xe thứ hai đi hết quãng đường AB là b.
\(60\%=\frac{3}{5}\)
Ta có: \(\frac{a}{b}=\frac{5}{3}\Rightarrow\frac{a}{5}=\frac{b}{3}\) và \(a-b=4\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{5}=\frac{b}{3}=\frac{a-b}{5-3}=\frac{4}{2}=2\)
Suy ra:
\(\frac{a}{5}=2\Rightarrow a=10\)
\(\frac{b}{3}=2\Rightarrow b=6\)
Gọi v 1 ; v 2 lần lượt là vận tốc của xe thứ nhất và xe thứ hai (km/h) ( v 1 ; v 2 > 0)
Gọi t 1 ; t 2 lần lượt là thời gian của xe thứ nhấy và xe thứ hai (h) ( t 1 ; t 2 > 0)
Từ đề bài ta có: v 1 = 60 100 v 2 ⇒ v 1 = 3 5 v 2 và t 1 = t 2 + 4
Vì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch nên ta có:
Vậy thời gian người thứ hai đi từ A đến B là 6h
Đáp án cần chọn là B
Gọi thời gian xe thứ nhất đi hết quãng đường AB là a
thời gian xe thứ hai đi hết quãng đường AB là b
60% = \(\frac{3}{5}\)
Ta có \(\frac{a}{b}=\frac{5}{3}\Rightarrow\frac{a}{5}=\frac{b}{3}\)
a - b = 4
Áp dụng tính chất dãy tỉ số bằng nhau là
\(\frac{a}{5}=\frac{b}{3}=\frac{a-b}{5-3}=\frac{4}{2}=2\)
Suy ra
\(\frac{a}{5}=2\Rightarrow a=2\cdot5=10\)
\(\frac{b}{3}=2\Rightarrow b=2\cdot3=6\)
Vậy thời gian xe thứ nhất đi hết quãng đường AB là 10 giờ
thời gian xe thứ hai đi hết quãng đường AB là 6 giờ
Ta có: v1=60% x v2=\(\frac{3}{5}\) x v2
=>\(\frac{v_1}{v_2}\) = \(\frac{3}{5}\)
t1-t2=4h
Vì quãng đường không đổi nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.=
\(\frac{v_1}{v_2}\)=\(\frac{t_1}{t_2}\)=> \(\frac{3}{5}\)=\(\frac{t_2}{t_1}\)= \(\frac{t_1}{5}\) = \(\frac{t_2}{3}\) = \(\frac{t_1-t_2}{5-3}\)= \(\frac{4}{2}\)=2.
=> t1= 2 x 5 = 10.
t2= 2 x 3 = 6.
Vậy thời gian đi của xe thứ nhất là 10h.
Thời gian đi của xe thứ hai là 6h.
có được tặng GP không