K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

ĐK: -1<x\(\ne\)0

Đặt \(log_3\left(x+1\right)=t\) (t\(\ne\)0)

bpt trở thành \(\frac{1}{3^t}>\frac{1+t}{3^t-1}\)

\(\Leftrightarrow\frac{1+t}{3^t-1}-\frac{1}{3^t}< 0\Leftrightarrow\frac{t.3^t+1}{3^t\left(3^t-1\right)}< 0\)

\(3^t>0\forall t\) nên ta có thể nhân 2 vế của bpt với \(3^t\)

Khi đó, ta có bpt \(\Leftrightarrow\frac{t.3^t+1}{3^t-1}< 0\)

*) Đặt \(f\left(t\right)=t.3^t+1\), f(0)=1

dễ thấy f(t) đồng biến trên tập R

*) Xét 2 trường hợp:

+TRƯỜNG HỢP 1) với t<0 \(\Leftrightarrow3^t< 1\Leftrightarrow3^t-1< 0\) (1)

\(\lim\limits_{t\rightarrow-\infty}\left[f\left(t\right)\right]=1\) nên f(t)>1 với mọi t \(\Leftrightarrow t.3^t+1>1\Rightarrow t.3^t+1>0\forall t\) (2)

kết hợp (1) và (2) ta thấy t<0 thỏa mãn bpt

+TRƯỜNG HỢP 2) với t>0 \(\Leftrightarrow3^t-1>0\) (3)

lại có f(t)>f(0) với mọi t>0 \(\Leftrightarrow t.3^t+1>1\) (4)

kết hợp (3) và (4) ta thấy không thỏa mãn bpt

 

vậy bpt đã cho tương đương t<0\(\Leftrightarrow log_3\left(x+1\right)< 0\Leftrightarrow x+1< 1\Leftrightarrow x< 0\)

kết hợp ĐK ta có -1<x<0

18 tháng 11 2016

Giờ mới trông thấy bài này :)))

10 tháng 7 2016

 

a)ĐK: 2x+1>0

\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)

\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)

Nhân \(log_3\left(2x+1\right)\)cả 2 vế

Đặt \(t=log_3\left(2x+1\right)\)

\(\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm

b)ĐK x>0

\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)

Đặt \(t=log_{27}x\)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)

 

1 tháng 7 2017

@Nguyễn Quang Trung

1 tháng 7 2017

Ta có : \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)

\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{\left(x-3\right)\left(x+3\right)x}\right)\)

\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\right)\)

\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x^2+6x+9-x^2}{x\left(x^2-3\right)}\right)\)

\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{3\left(2x+3\right)}{x\left(x^2-3\right)}\right)\)

\(=\frac{x}{x-3}-\frac{3x^2+9x}{x\left(x^2-3\right)}\)(mk sợ mk làm sai lắm nếu làm sai thì sory nhá)

7 tháng 12 2019

ĐK: x >0

Liên hợp:

pt <=> \(\sqrt{\frac{x^2+3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)

<=> \(\frac{\frac{x^2+3}{x}-4}{\sqrt{\frac{x^2+3}{x}}+2}=\frac{x^2+7-4\left(x+1\right)}{2\left(x+1\right)}\)

<=> \(\frac{x^2-4x+3}{x\left(\sqrt{\frac{x^2+3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{\frac{x^2+3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)

(1) <=> x = 1 hoặc x = 3 (tm)

(2) <=> \(x\sqrt{\frac{x^2+3}{x}}=2\)

<=> \(x\left(x^2+3\right)=4\)

<=> \(x^3+3x-4=0\)

,<=> (x-1)(x^2 +x  +4) = 0

<=> x = 1 (tm)

Vậy x = 1 hoặc x = 3.

7 tháng 12 2019

cách khác nhung chỉ dài thêm thôi

\(DK:x>0\)

PT\(\Leftrightarrow2\left(x+1\right)\sqrt{x^2+3}=\sqrt{x}\left(x^2+7\right)\)

Dat \(\sqrt{x^2+3}=t>0\)

PT tro thanh 

\(\sqrt{x}t^2-2\left(x+1\right)t+4\sqrt{x}=0\)

Ta co:

\(\Delta^`_t=\left(x-2\right)^2\ge0\)

\(\Rightarrow\hept{\begin{cases}t_1=\frac{x+1+\left|x-2\right|}{\sqrt{x}}\\t_2=\frac{x+1-\left|x-2\right|}{\sqrt{x}}\\t_3=\frac{x+1}{\sqrt{x}}\end{cases}}\)

Sau do the vo giai nhu binh thuong :D