A=22015 - 22014 - 22013 - ...- 22 - 2 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)
\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)
\(2^{x+1}\cdot2^{2014}=2^{2015}\\ 2^{x+1}=2^{2015}:2^{2014}\\ 2^{x+1}=2\\ =>x+1=1\\ x=1-1\\ x=0\)
ta có: \(S=1-2+2^2-2^3+2^4-2^5+...+2^{2013}-2^{2014}\)
\(\Rightarrow2S=2-2^2+2^3-2^4+2^5-2^6+...+2^{2014}-2^{2015}\)
=> 2S + S = -22015 + 1
=> 3S = -22015 + 1
=> 3S - 1 = -22015
=> 1 - 3S = 22015
( cn về S = 1 - 2 + 22 - 23 + 24-25+...+22013 - 22014 mk vx chưa hiểu quy luật của nó lắm, thật lòng xl bn nha! mk chỉ bk z thoy!)
`#3107`
\(A=1+2^1+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)
\(A=2^{2016}-1\)
Vậy, \(A=2^{2016}-1.\)
\(A=2^0+2^1+2^2+...+2^{2015}\)
\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)
\(A=2A-A=2^{2016}-2^0\)
\(A=2^{2016}-1\)
Bài 1:
Ta có: \(3n+1⋮n-1\)
\(\Leftrightarrow3n-3+4⋮n-1\)
mà \(3n-3⋮n-1\)
nên \(4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)(tm)
Vậy: \(n\in\left\{2;0;3;-1;5;-3\right\}\)
\(A=1+2^1+2^2+...+2^{2015}\)
\(\Rightarrow A=\dfrac{2^{2015+1}-1}{2-1}\)
\(\Rightarrow A=2^{2016}-1\)
\(\Rightarrow A+1=2^{2016}\)
\(\Rightarrow A+1=\left(2^3\right)^{672}\)
\(\Rightarrow A+1=8^{672}\)
Đặt \(B=2^{2014}+2^{2013}+...+2+1\)
\(\Leftrightarrow2B=2^{2015}+2^{2014}+...+2^2+2\)
\(\Leftrightarrow B=2^{2015}-1\)
\(A=2^{2015}-B=2^{2015}-2^{2015}+1=1\)