K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2015

tớ mới tham gia nên k biết viết anpha,tớ sẽ viết là @ nhé.hình vẽ là tam giác ABC có Bc và cạnh huyền,AB là cạnh  kề còn AC là cạnh đối(tớ cho góc B làm góc anpha)

a,tan@=AC/AB

sin@=AC/BC (1),cos@=AB/BC (2)

từ (1) và (2) suy ra sin@/cos@=AC/BC : AB/BC = AC/BC x BC/AB= AC/AB

mà tan@ = AC/AB

=>tan@=sin@/cos@

những câu sau làm tương tự nhé

24 tháng 4 2017

Hướng dẫn giải:

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khá

a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC

⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα

tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1

cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα

b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1

Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα

cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.



24 tháng 6 2019

a/ \(\sin\alpha=\frac{C_đ}{C_h}\)

\(\cos\alpha=\frac{C_k}{C_h}\)

\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{C_đ}{C_h}}{\frac{C_k}{C_h}}=\frac{C_đ}{C_k}=\tan\alpha\)

b/ \(\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{C_k}{C_h}}{\frac{C_đ}{C_h}}=\frac{C_k}{C_đ}=\cot\alpha\)

c/ \(\tan\alpha.\cot\alpha=\frac{C_đ}{C_k}.\frac{C_k}{C_đ}=1\)

d/ \(\sin^2\alpha=\frac{C_đ^2}{C_h^2}\)

\(\cos^2\alpha=\frac{C_k^2}{C_h^2}\)

\(\Rightarrow\sin^2\alpha+\cos^2\alpha=\frac{C_đ^2+C_k^2}{C_h^2}=\frac{C_h^2}{C_h^2}=1\)

P/s: hok trc lp 9 hay sao mà lm bài bài này?

25 tháng 6 2019

uk. mk học trc lp 9

Câu 1: 

\(\cos a=\sqrt{1-0.28^2}=\dfrac{24}{25}\)

\(\tan a=\dfrac{0.28}{0.96}=\dfrac{7}{24}\)

\(\cot a=\dfrac{1}{\tan a}=\dfrac{24}{7}\)

\(\left(\sin a+\cos a\right)^2=\sin^2a+\cos^2a+2\cdot\sin a\cdot\cos a\)

\(=1+2\cdot\sin a\cdot\cos a\)

\(=\tan^2a\cdot\cot^2a+2\cdot\sin a\cdot\cos a\)

25 tháng 7 2023

\(\dfrac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}=4\\ VT=\dfrac{sin^2a+2sinacosa+cos^2a-sin^2a+2sinacosa-cos^2a}{sinacosa}\\ =\dfrac{4sinacosa}{sinacosa}=4=VP\)

a: \(S=cos^2a\left(1+tan^2a\right)=cos^2a\cdot\dfrac{1}{cos^2a}=1\)

b: \(VP=\dfrac{1+sin2a-1+sin2a}{\dfrac{1}{2}\cdot sin2a}=\dfrac{2\cdot sin2a}{\dfrac{1}{2}\cdot sin2a}=4=VT\)

NV
25 tháng 6 2019

\(\left(cosa-sina\right)^2=\frac{1}{25}\Leftrightarrow sin^2a+cos^2a-2sina.cosa=\frac{1}{25}\)

\(\Leftrightarrow\frac{sin^2a+cos^2a-2sina.cosa}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)

\(\Leftrightarrow1+cot^2a-2cota=\frac{1}{5}+\frac{1}{5}cot^2a\)

\(\Leftrightarrow4cot^2a-10cota+4=0\Rightarrow\left[{}\begin{matrix}cota=2\\cota=\frac{1}{2}\end{matrix}\right.\)

25 tháng 6 2019

Mr.VôDanh A di phò phò! Đã có người làm cho thí chủ, cớ sao lại gọi ni sư vào làm j??!

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) 

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

 

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

b) Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

c) Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

d) Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)