K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021
có (n+2003^2004) nếu n là số lẻ thì(n+2003^2004) là số chẵn nếu n là số chẵn thì(n+2003^2004) là số lẻ có (n+2003^2004) nếu n là số lẻ thì(n+2003^2004) là số lẻ nếu n là số chẵn thì(n+2003^2004) là số chẵn chẵn x lẻ =chẵn lẻ x chẵn=chẵn =>(n+2003^2004)x(n+2004^2005) chia hết cho 2
3 tháng 7 2018

=1 ak banj ! mk k chắc chắn lắm vì mk mới lớp 5 ! thông cảm 

3 tháng 7 2018

=1 nhé

18 tháng 5 2017

Để mình giúp bạn!!

\(n^2+n+1⋮n+1\\ \Rightarrow n\left(n+1\right)+1⋮n+1\\ \Rightarrow n+1\in U\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow n\in\left\{0;-2\right\}\)

\(n^2+5⋮n+1\\ \Rightarrow n^2-1+6⋮n+1\\ \Rightarrow\left(n-1\right)\left(n+1\right)+6⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\text{Ư}\left(6\right)=\left\{1;6;-1;-6\right\}\\ \Rightarrow n=\left\{0;5;-2;-7\right\}\)

\(n+2⋮n^2-3\\ \Rightarrow n^2-3-1⋮n^2-3\\ \Rightarrow1⋮n^2-3\\ \)

17 tháng 5 2017

bạn giải đc câu nào chưa

Nếu bạn giải đc rồi thì giải hộ mik đc k ? Nha bạn

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

15 tháng 12 2016

làm câu

5 tháng 9 2015

Ta có: B=n2+n3=n.(n2+1)

Vì n là số tự nhiên=>n có 2 dạng là 2k và 2k+1

*Với n=2k=>B=n.(n2+1)=2k.(2k2+1) chia hết cho 2=>B chẵn(1)

*Xét n=2k+1=>B=n.(n2+1)=(2k+1).((2k+1)2+1)

=>B=(2k+1).(2k2+2.2k.1+12+1)

=>B=(2k+1).(2k.2k+2.2k+1+1)

=>B=(2k+1).(2.4k+2.2k+2)

=>B=(2k+1).(4k+2k+1).2 chia hết cho 2

=>B chẵn(2)

Từ (1) và (2)=>B là số chẵn

=>B:2(dư 0)

24 tháng 10 2015

Mình cứ tưởng trên đời này có mỗi mình tuôi là khổ nhất hóa ra còn người khổ hơn tuôi nưa!!! Đò chính là nguyenminhtam

Noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo!!!!!!

8 tháng 10 2016

a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3

=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}

b/  \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)

Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5

=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}

Các câu còn lại làm tương tự