Tìm x,y thuộc Z thỏa
(x-2)^2+(y+16)^2016=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\left(x-2\right)^2\ge0;\left(y+16\right)^{2016}\ge0\forall x;y\)
Mà theo đề bài: (x - 2)2 + (y - 16)2016 = 0
\(\Rightarrow\begin{cases}\left(x-2\right)^2=0\\\left(y+16\right)^{2016}=0\end{cases}\)\(\Rightarrow\begin{cases}x-2=0\\y+16=0\end{cases}\)\(\Rightarrow\begin{cases}x=2\\y=-16\end{cases}\)
Vậy x = 2; y = -16
Do (x-2)2 >= 0 (1) (lớn hơn hoặc bằng)
(y+6)2016 >= 0 (2)
Mặt khác a) (x-2)2 + ( y + 6 )2016 = 0
nên kết hợp (1) và (2) ta được :
(x - 2)2 = 0 => x - 2 = 0 => x = 2
và (y+6)2016 = 0 => y + 6 = 0 => y = -6
Vậy x = 2 và y =-6
a) do (x-2)2\(\ge0\) , (y+6)2\(\ge0\) mà (x-2)2+(y+6)2=0
nên dấu "=" xảy ra khi chỉ khi (x-2)2=0, (y+6)2=0
=> x=2, y=-6
vậy x=2, y=-6
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(x^{2016}+\underbrace{1+1+...+1}_{1007}\geq 1008\sqrt[1008]{x^{2016}}=1008x^2\)
Thực hiện tương tự với \(y,z\) và cộng theo vế, thu được:
\(x^{2016}+y^{2016}+z^{2016}+3021\geq 1008P\Leftrightarrow 1008P\leq 3024\)
\(\Rightarrow P\leq 3\) tức \(P_{\max}=3\)
Dấu bằng xảy ra khi \(x=y=z=1\)
Nhận xét (x- 5)2 >= 0 với mọi x
(y- 2)4 >= 0 với mọi y
(z+ 3)2016 >= 0 với mọi z
=> (x- 5)2+ (y- 2)4+ (z+ 3)2016= 0
<=> \(\hept{\begin{cases}x-5=0\\y-2=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\\z=-3\end{cases}}\)
\(\left(x-2\right)^2+\left(y+16\right)^{2016}=0\)
Vì: \(\left(x-2\right)^2\ge0;\left(y+16\right)^{2016}\ge0\)
Nên: \(\left(x-2\right)^2+\left(y+16\right)^{2016}=0\)
\(\Leftrightarrow\begin{cases}x-2=0\\y+16=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-16\end{cases}\)