Chứng minh rằng tích của 4 STN liên tiếp chia hết cho 6.
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ta có 2 STN liên tiếp là : a,a+1
a . (a + 1 )
Trường hợp 1
Nếu a là số chẵn thì \(⋮\)2 => a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )
Trường hợp 2
Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2
Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2
Câu b :
ta gọi như câu a : a , a+1,a+2
ta có : a . ( a + 1 ) . ( a + 2 )
TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3
TH2 Nếu a+1 chia hết cho 3 => Tích của 3 STH liên tiếp chai hết cho 3
TH3 nếu a + 2 chia hết cho 3 = > Tích của 3 STH liên tiếp chai hết cho 3
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5
Ta có dạng: a(a+1)
Nếu a = 2k
2k(2k+1) chia hết cho 2
Nếu a = 2k+1
2k(2k+1+1) = 2k.2(k+1) chia hết cho 2
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
gọi 3 stn liên tiếp là : a; a+1; a+2.
ta có: a+(a+1)+(a+2)=a+a+1+a+2=(a+a+a)+(1+2)=3.a+3=3.(a+1) chia hết cho 3
=> tổng của 3 stn liên tiếp chia hết cho 3.
gọi 4 stn liên tiếp là: a; a+1; a+2; a+3.
ta có: a+(a+1)+(a+2)+(a+3)=a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)=4.a+6. Vì 4.a chia hết cho 4 mà 6 ko chia hết cho 4 nên 4.a+6 ko chia hết cho 4
=> tổng 4 stn liên tiếp ko chia hết cho 4.
3 số đó có dạng: a+a+1+a+2 = 3a + 3 = 3(a+1)
Chia hết cho 3
4 số đó có dạng: a+a+1+a+2+a+3 = 4a + 6 = 4(a+1) + 2
4 a chia hết cho 4 mà 2 không chia hết cho 4
=> Không chia hết cho 4
Chia n thành 2 loại : Số chẵn (2k) ; Số lẻ (2k + 1)
Rồi thế vô
tích hai số t ự nhiên liên tieeos trong đó có 1 số chẵn số lẻ suy ra chẵn nhân lẻ =chẵn (dpcm)
Gọi 3 só tự nhiên liên tiếp là: a; a+1; a+2
=> Tích của ba số tự nhiên liên tiếp là:
a(a+1)(a+2)
=a(1+2)
=a.3 ⋮3
Vậy tích của 3 số tự nhiên liên tiếp chia hết cho 3
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.
Gọi bốn sô tự nhiên liên tiếp bất kì là a; a+1; a+2; a+3 ( \(a;\left(a+1\right);\left(a+2\right);\left(a+3\right)\inℕ\))
Ta có: a+ (a+1) + (a+2) + (a+3)
= a + a + 1 + a + 2 + a + 3
= (a+a+a+a) + (1+2+3)
= 4a + 6
Vì \(4a⋮4\)(do \(4⋮4\)) và \(6⋮̸4\)nên \(4a+6⋮̸4\)
hay \(\text{a+ (a+1) + (a+2) + (a+3)}⋮̸4\)
Vậy tổng của 4 stn liên tiếp ko chia hết cho 4
Sửa đề: Chứng minh rằng tổng 4 stn liên tiếp không chia hết cho 4.
Giải:
Gọi 4 stn liên tiếp là a, a + 1, a + 2, a + 3. Ta có tổng của chúng là:
a + (a + 1) + (a + 2) + (a + 3)
= 4a + 6
Vì \(4a⋮4\) và \(6⋮̸4\) nên \(4a+6⋮̸4\)
\(\RightarrowĐPCMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM\)
các bạn có thể cho mình biết được không,đang cần gấp lắm.
VÀO link này đỡ nek : CM:Tích 4 số tụ nhiên liên tiếp chia hết cho 24? | Yahoo Hỏi & Đáp
Vì trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 2,1 số chia hết cho 3
Nên tích 4 số tự nhiên liên tiếp sẽ chia hết cho 6