K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3

Do (2;3)=1 nên (2n;3)=1

=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3

=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)

22 tháng 10 2016

*với n chẵn

2^n=4^t

nếu t chẵn  4^t tận cùng luôn =6 vậy 2^n-1 luôn chia hết cho 5

nếu t lẻ 4^t tận cùng luôn =4 vậy 2^n+1 luôn chia hết cho 5

*với n lẻ

2^n=2^(2t+1 )=2.4^t chia 3 luôn dư 2 => 2^n+1 chia hết cho 3

11 tháng 12 2015

Mình thử n = 2 thì 2n - 1 = 2 . 2 - 1 = 3 (3 là số nguyên tố)

n = 2 thì 2n + 1 = 2 . 2 + 1 = 5 (5 là số nguyên tố)

Vậy đề bạn sai

 

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$

$\Rightarrow d=1$

Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.

 

21 tháng 1 2016

Giúp mình với
(-3)2+33-(-3)0
Đáp số là 35
 

21 tháng 1 2016

Vì a và b đều có Ức chung là One

31 tháng 12 2018

 Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1 
- gọi d là ước chung nếu có của cả a và b 
==> a chia hết cho d nên 8a cũng chia hết cho d 
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 ) 
==> ( b^2 - 8.a ) chia hết cho d 
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2 
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1 
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1 
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1 
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau

31 tháng 12 2018

Tau trả lời rồi

mi coi câu hỏi trước đi :(

31 tháng 12 2018

\(A=1+2+3+4+....+n=\frac{\left(n+1\right)n}{2}\)

Gọi: d=UCLN(A,B)

Ta có:

\(\hept{\begin{cases}\frac{\left(n+1\right)n}{2}⋮d\\2n+1⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n^2+n⋮d\\2n^2+n⋮d\end{cases}}\Leftrightarrow2n^2+n-n^2-n⋮d\Leftrightarrow n^2⋮d\)

\(\Leftrightarrow n^2+n-n^2⋮d\Leftrightarrow n⋮d\Leftrightarrow2n+1-2n⋮d\Leftrightarrow d=1\)

Vậy: A và B là 2 số nguyên tố cùng nhau