tìm x,biết:
a) \(4^x+4^{x+3}=4160\)
b)\(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{2}{3}.3^{x+1}-7.3^x=405\)
<=> 2.3x-7.3x=-405
<=> 5.3x=405
<=> 3x=81 = 34
=> x=4
b/ (0,4x-1,3)2=5,29=(2,3)2
=> \(\hept{\begin{cases}0,4x-1,3=2,3\\0,4x-1,3=-2,3\end{cases}}\)=> \(\hept{\begin{cases}x=9\\x=-\frac{5}{2}\end{cases}}\)
c/ 5.2x+1.2-2-2x=384
<=> 5.2x-1-2.2x-1=384
<=> 3.2x-1=384
<=> 2x-1=128=27
=> x-1=7 => x=8
d/ 3x+2.5y=45x
<=> 3x+2.5y=32x.5x
=> \(\hept{\begin{cases}x+2=2x\\x=y\end{cases}}\)=> x=y=2
a: \(\Leftrightarrow3^x\cdot\left(\dfrac{2}{3}\cdot3-7\right)=405\)
\(\Leftrightarrow3^x=-81\)(vô lý)
b: \(\left(0,4x-1,3\right)^2=5,29\)
=>0,4x-1,3=2,3 hoặc 0,4x-1,3=-2,3
=>0,4x=3,6 hoặc 0,4x=-1
=>x=9 hoặc x=-2,5
c: \(5\cdot2^{x+1}\cdot2^{-2}-2^x=284\)
\(\Leftrightarrow2^x\cdot5\cdot2\cdot2^{-2}-2^x=284\)
\(\Leftrightarrow2^x\cdot\left(\dfrac{5}{2}-1\right)=284\)
\(\Leftrightarrow2^x=\dfrac{568}{3}\)(vô lý)
d: \(\Leftrightarrow4^x\left(1+4^3\right)=4160\)
\(\Leftrightarrow4^x=64\)
hay x=3
b)\(2^{x-1}+5\cdot2^{x-2}=\frac{7}{32}\)
\(2^x:2+5\cdot2^x:2^2=\frac{7}{32}\)
\(2^x:2+2^x:\frac{4}{5}=\frac{7}{32}\)
\(2^x\cdot\left(\frac{1}{2}+\frac{5}{4}\right)=\frac{7}{32}\)
\(2^x\cdot\frac{7}{4}=\frac{7}{32}\)
\(2^x=\frac{7}{32}:\frac{7}{4}=\frac{1}{8}\)
\(2^x=\frac{2^0}{2^3}=2^{-3}\)
\(\Rightarrow x=-3\)
a) \(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
b) \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)
\(\Rightarrow2^x.\frac{1}{2}+5.2^x.\frac{1}{4}=\frac{7}{32}\)
\(\Rightarrow2^x.\left(\frac{1}{2}+5.\frac{1}{4}\right)=\frac{7}{32}\)
\(\Rightarrow2^x.\frac{7}{4}=\frac{7}{32}\)
\(\Rightarrow2^x=\frac{7}{32}:\frac{7}{4}\)
\(\Rightarrow2^x=\frac{1}{8}\)
\(\Rightarrow2^x=2^{-3}\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\)