K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

b)\(2^{x-1}+5\cdot2^{x-2}=\frac{7}{32}\)

\(2^x:2+5\cdot2^x:2^2=\frac{7}{32}\)

\(2^x:2+2^x:\frac{4}{5}=\frac{7}{32}\)

\(2^x\cdot\left(\frac{1}{2}+\frac{5}{4}\right)=\frac{7}{32}\)

\(2^x\cdot\frac{7}{4}=\frac{7}{32}\)

\(2^x=\frac{7}{32}:\frac{7}{4}=\frac{1}{8}\)

\(2^x=\frac{2^0}{2^3}=2^{-3}\)

\(\Rightarrow x=-3\)

21 tháng 10 2016

a) \(4^x+4^{x+3}=4160\)

\(\Rightarrow4^x+4^x.4^3=4160\)

\(\Rightarrow4^x.\left(1+4^3\right)=4160\)

\(\Rightarrow4^x.65=4160\)

\(\Rightarrow4^x=64\)

\(\Rightarrow4^x=4^4\)

\(\Rightarrow x=4\)

Vậy \(x=4\)

b) \(2^{x-1}+5.2^{x-2}=\frac{7}{32}\)

\(\Rightarrow2^x.\frac{1}{2}+5.2^x.\frac{1}{4}=\frac{7}{32}\)

\(\Rightarrow2^x.\left(\frac{1}{2}+5.\frac{1}{4}\right)=\frac{7}{32}\)

\(\Rightarrow2^x.\frac{7}{4}=\frac{7}{32}\)

\(\Rightarrow2^x=\frac{7}{32}:\frac{7}{4}\)

\(\Rightarrow2^x=\frac{1}{8}\)

\(\Rightarrow2^x=2^{-3}\)

\(\Rightarrow x=-3\)

Vậy \(x=-3\)

 

 

12 tháng 6 2018

1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)

   b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)

\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)

\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)

\(=5+1+0,5=6,5\)

2) a) 1/2 + 2/3x = 1/4

=> 2/3x            = 1/4 - 1/2

=> 2/3x            = -1/4

=> x                = -1/4 : 2/3

=> x                = -3/8

b) 3/5 + 2/5 : x = 3 1/2

=> 3/5 + 2/5 : x = 7/2

=>         2/5 : x  = 7/2 - 3/5

=>         2/5 : x  = 29/10

=>               x    = 2/5 : 29/10

=>               x    = 4/29

c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007

=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1

=>   x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007

=>  x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0

=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0

Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0

Nên x + 2008 = 0 <=> x = -2008

Vậy x = -2008

12 tháng 6 2018

1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)

  b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)

    <=>\(\frac{2}{3}.x=-\frac{1}{2}\)

   <=>\(x=-\frac{3}{4}\)

b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)

 <=>\(\frac{2}{5x}=\frac{29}{10}\)

 <=>\(x=\frac{29}{4}\)

c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)

<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)

<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)

<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0

<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)

<=>x=-2008

 Vậy x=-2008

Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!

29 tháng 9 2019

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{-z+3}{-4}=\frac{2x-2+3y-6-z+3}{9}=\frac{56-5}{9}\)\(=\frac{17}{3}\)

\(\Rightarrow x=\frac{37}{3},y=19,z=\frac{77}{3}\)

29 tháng 9 2019

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(2x+3y-z=56\)

\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4};2x+3y-z=56\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{56-2-6+3}{9}=\frac{51}{9}=\frac{17}{3}\)

\(\Leftrightarrow x=\frac{37}{3};y=19;z=\frac{77}{3}\)

Vậy \(x=\frac{37}{3};y=19;z=\frac{77}{3}\)

21 tháng 10 2017

xin lỗi mik mới lớp 6

30 tháng 10 2017

-4;-3;-2;-1 nha bạn.

a. 2x-1+ 5.2x-1:2=7/32

=> 2x+1.(1+5/2)=7/32

=>2x+1.7/2=7/32

=> 2x+1=1/16=1/24

=> x+1=-4=>x=-5

8 tháng 3 2019

a. 2x-1+ 5.2x-1:2=7/32

=> 2x+1.(1+5/2)=7/32

=>2x+1.7/2=7/32

=> 2x+1=1/16=1/24

=> x+1=-4=>x=-3

6 tháng 7 2016

2.

\(\frac{3n+9}{n-4}\in Z\)

\(\Rightarrow3n+9⋮n-4\)

\(\Rightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\times\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\)

\(\Rightarrow n-4\inƯ\left(21\right)\)

\(\Rightarrow n-4\in\left\{-7;-3;-1;1;3;7\right\}\)

\(\Rightarrow n\in\left\{-3;1;3;5;7;11\right\}\)

\(B=\frac{6n+5}{2n-1}\in Z\)

\(\Rightarrow6n+5⋮2n-1\)

\(\Rightarrow6n-3+8⋮2n-1\)

\(\Rightarrow3\left(2n-1\right)+8⋮2n-1\)

\(\Rightarrow8⋮2n-1\)

\(\Rightarrow2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow2n\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

\(n\in Z\)

\(\Rightarrow n\in\left\{0;1\right\}\)