K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)

\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)

=> a = b = c (đpcm)

 

 

 

 

 

21 tháng 10 2016

soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó

25 tháng 11 2018

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}=\frac{10a+b}{a+b}=\frac{10b+c}{b+c}=\frac{10a+11b+c}{a+2b+c}\)

\(\Rightarrow\frac{10a+b}{a+b}=\frac{10a+11b+c}{a+2b+c}\Rightarrow\left(10a+b\right).\left(a+2b+c\right)=\left(a+b\right).\left(10a+11b+c\right)\)

\(10a^2+20ab+10ac+ab+2b^2+bc=10a^2+11ab+ac+10ab+11b^2+bc\)

\(\Rightarrow9ac=9b^2\Rightarrow ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\left(đpcm\right)\)

p/s: bài này khó chơi lém, đoạn mk giản đơn hai vế ko hiểu ib vs mk :))

25 tháng 11 2018

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}=\frac{10a+b}{10b+c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow b^2=ac\)

\(\frac{a^2+b^2}{b^2+c^2}=\frac{a^2+ac}{ac+c^2}=\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\)

14 tháng 6 2017

\(\frac{\overline{ab}}{\overline{bc}}=\frac{b}{c}\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{10a+b}{10b+c}=\frac{b}{c}=\frac{10a+b-b}{10b+c-c}=\frac{10a}{10b}=\frac{a}{b}\)

\(\Rightarrow\frac{b}{c}=\frac{a}{b}\Rightarrow\frac{b^2}{c^2}=\frac{a^2}{b^2}\)

Áp dụng tính chất thêm một lần nữa , ta có :

\(\frac{b^2}{c^2}=\frac{a^2}{b^2}=\frac{b^2+a^2}{c^2+b^2}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{b^2}{c^2}=\frac{b}{c}.\frac{a}{b}=\frac{a}{c}\)

\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

24 tháng 7 2019

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\)

\(\Leftrightarrow\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow\frac{a+b+9a}{a+b}=\frac{b+c+9b}{b+c}\)

\(\Leftrightarrow1+\frac{9a}{a+b}=1+\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{9a}{a+b}=\frac{9b}{b+c}\)

\(\Leftrightarrow\frac{a}{a+b}=\frac{b}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)=b\left(a+b\right)\)

\(\Leftrightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\)

\(\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

Ta có:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Rightarrow\frac{\overline{ab}}{\overline{bc}}=\frac{a+b}{b+c}=\frac{\overline{ab}-\left(a+b\right)}{\overline{bc}-\left(b+c\right)}\)

\(=\frac{10a+b-a-b}{10b+c-b-c}=\frac{9a}{9b}=\frac{b}{a}\)

\(\frac{a+b}{b+c}=\frac{a}{b}=\frac{a+b-a}{b+c-b}=\frac{b}{c}\)

Vậy: \(\frac{a}{b}=\frac{b}{c}\left(b,c\ne0\right)\)

Bn ơi mk nghĩ đề phải là : giả thuyết \(c\ne0\)bn nhé.......

#kiseki no enzeru#

hok tốt

11 tháng 12 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{\overline{ab}}{\overline{bc}}=\frac{10a+b}{10b+c}=\frac{10a}{10b}=\frac{b}{c}=\frac{a}{b}\)

Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow ac=b^2\left(đpcm\right)\)

Vậy \(ac=b^2\)

 

 

11 tháng 12 2016

\(\frac{ab}{bc}=\frac{b}{c}\) => \(abc=bcb\) => \(abc=cb^2\)

=> \(acb=cb^2\) => \(ac=b^2\) (\(đpcm\))

31 tháng 8 2021

Giải:

Từ \(\frac{ab}{bc}=\frac{b}{c}\left(c\ne0\right)\Rightarrow\frac{ab}{b}=\frac{bc}{c}\left(a,b,c>0\right)\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)hay \(ac=b^2\). Ta có: \(\left(a^2+b^2\right)c=\left(a^2+ac\right)=a^2c+ac^2\)

Tương tự có: \(\left(b^2+c^2\right)a=a^2c+ac^2\)

\(\Rightarrow\left(a^2+b^2\right)c=\left(b^2+c^2\right)a\)hay \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

1) Áp dụng tính chất của dãy tỉ số = nhau ta có:

ab/bc=b/c=ab−b/bc−c=(10a+b)−b/(10b+c)−c=10a/10b=a/b

⇒a^2/b^2=b^2/c^2=ab/bc=a/c(1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

a^2/b^2=2=b^2/c^2=a^2+b^2/b^2+c^2(2)

Từ (1) và (2) ⇒a^2+b^2/b^2+c^2=a/c(đpcm)

12 tháng 4 2018

Có : \(\dfrac{\overline{ab}}{\overline{bc}}=\dfrac{a}{c}\Rightarrow\dfrac{10a+b}{10b+c}=\dfrac{a}{c}=\dfrac{9a+b}{10b}\)( áp dụng dãy tỉ số bằng nhau)

\(=\dfrac{111...11.\left(9a+b\right)}{111..11.10b}\)(có n chữ số 1 trong số 111..111)

\(\dfrac{999..99a+111..11b}{111..110b}=\dfrac{a}{c}=\dfrac{999..99a+a+111..11b}{111..110b+c}=\dfrac{100...000a+111...11b}{111..110b+c}\)=\(\dfrac{\overline{abbb...bb}}{\overline{bbb..bbc}}=\dfrac{a}{c}\)