mọi ng giải hộ em bài này với ạ( có lập bảng và giải bằng hệ phương trình ạ) e cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $x^4+2x^3-ax^2+5x+b$ chia $x^2+x-2$ dư $3x+4$ thì:
$x^4+2x^3-ax^2+5x+b=(x^2+x-2)Q(x)+3x+4$ với $Q(x)$ là đa thức thương.
$\Leftrightarrow x^4+2x^3-ax^2+5x+b=(x-1)(x+2)Q(x)+3x+4$
Cho $x=1$ thì:
$8-a+b=7\Leftrightarrow a-b=1(1)$
Cho $x=-2$ thì:
$-10-4a+b=-2\Leftrightarrow -4a+b=8(2)$
Từ $(1); (2)\Rightarrow a=-3; b=-4$
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)
\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)
b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)
\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)
\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)