Chứng mình rằng
\(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}<\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{5^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{100^2}< \frac{1}{99.100}\)
Cộng vế với vế ta được: \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)(1)
Tương tự: \(\frac{1}{5^2}>\frac{1}{5.6};\frac{1}{6^2}>\frac{1}{6.7};...;\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng vế với vế ta được \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)(2)
Từ (1) và (2) =>đpcm
\(Ta\) \(có : \)
\(1 / 5^2 + 1 /6^2 + ... + 1 /100^2 < 1 /4.5\)\(+ 1 / 5 .6 + ... + 1 / 99 .100\)
\(Mà ta có:\)\(1 / 4 .5 + 1 / 5 .6 + ... + 1 / 99 .100\)
\(\Rightarrow\)\(1 / 4 - 1 / 5 + 1 / 5 - 1 / 6 + ... +\)\(1 / 99 - 1 / 100\)
\(\Rightarrow\)\(1 / 4 - 1 / 100\) \(< 1 / 4\)
\(Nên 1 / 5^2 + 1 /6^2 + ...+ 1 / 100^2 < 1 / 4\)
Tương tự chứng minh tiếp nhé 😘😘
C/m<1/4
t\(n^2>n\left(n-1\right)=>\frac{1}{n^2}<\frac{1}{n\left(n-1\right)}\)
\(\frac{1}{5^2}<\frac{1}{4.5};\frac{1}{6^2}<\frac{1}{5.6};\frac{1}{100^2}<\frac{1}{99.100}\)
\(\frac{1}{4.5}+..+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}.ok\)
CM>1/6
\(n^2\frac{1}{n\left(n+1\right)}\)
\(\frac{1}{5.6}+...+\frac{1}{100.101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{5}>\frac{1}{6}\)OK
doan cuoi
\(\frac{1}{5}-\frac{1}{101}=\frac{96}{5.101}>\frac{96}{5.102}=\frac{1.}{6}.\frac{96}{85}>\frac{1}{6}ok\)
ta có :\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6^2}<\frac{1}{5.6}\)
\(\frac{1}{7^2}<\frac{1}{6.7}\)
.....
\(\frac{1}{100^2}<\frac{1}{99.100}\)
\(\Rightarrow A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\) (1)
Ta có : \(\frac{1}{5.6}<\frac{1}{5^2}\)'
\(\frac{1}{6.7}<\frac{1}{6^2}\)
....\(\frac{1}{100.101}<\frac{1}{100^2}\)
\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\) <A
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{101}\) <A
\(\frac{1}{5}-\frac{1}{101}\) <A
mà \(\frac{96}{5.101}=\frac{96}{505}>\frac{96}{576}\)
hay \(A>\frac{1}{6}\) (2)
từ (1); và (2) suy ra \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+..+\frac{1}{100^2}<\frac{1}{4}\) (đpcm)
đây là cách dễ hiểu nhất nhé
Cho \(A=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}\)
Chứng minh rằng 1/6 < A < 1/4
Bài làm:
Xét: \(\frac{1}{5^2}>\frac{1}{5.6}\) ; \(\frac{1}{6^2}>\frac{1}{6.7}\) ; ... ; \(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{1}{6}\) (1)
Lại có: \(\frac{1}{5^2}< \frac{1}{4.5}\) ; \(\frac{1}{6^2}< \frac{1}{5.6}\) ; ... ; \(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (2)
Từ (1) và (2) => \(\frac{1}{6}< A< \frac{1}{4}\)
\(A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{99.100}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}\)
=> A < 1/4
\(A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)
vậy 1/6 < A < 1/4