- 1. Cho ( 2a + 7b ) chia hết cho 3 ; ( a , b ϵ N )
Chứng minh ( 4a + 2b ) chia hết cho 3
- 2. Cho ( 111a + 2b ) chia hết cho 12 ; ( a , b ϵ N )
Chứng minh ( 9a + 13b ) chia hết cho 12
Giúp mình với các bạn , các anh chị ơi mai em phải nộp rồi em không biết đề thế nào nếu bạn nào có sách bồi dưỡng năng lực tự học 6 thì 2 bài này là bài 31 , 37 nhé
1, ta có 2a+7b chia hết cho 3 => 2(2a+7b) chia hết cho 3 hay 4a + 14b chia hết cho 3
xét hiệu : ( 4a+14b ) - ( 4a+ 2b) = 12b chia hết cho 3 , với mọi b thuộc N
mà 4a+14b chia hết cho 3 => 4a+2b chia hết cho 3 ( cái này áp dụng tính chất chia hết của 1 hiệu : x chia hết cho y , m chia hết cho y với m = x-z => z chia hết cho y)
2 , ý này tương tự thôi
vì 12 = 22. 3 mà (4,3)=1 nên để chứng minh 9a + 13b chia hết cho 12 , ta chúng minh 9a+13b chia hết cho 3 và 4
- , chứng minh chia hết cho 4
Ta có 111a + 2b chia hết cho 4 ( vì nó chia hết cho 12 mà )
Mà 2b chia hết cho 2 , với mọi b thuộc N
=> 111a chia hết cho 2 , mặt khác (111,2)=1 =>a chia hết cho 2
- , chứng minh chia hết cho 3
xét tổng 111a+2b+9a+13b = 120a+15b = 15(8a+b) chia hết cho 15 , mà 15=3.5 , đồng thời (3,5)=1
Mà 111a+2b chia hết cho 15 hay chia hết cho cả 3 và 5 ( vì 120 chia hết cho 15 )
Suy ra 9a+13b chia hết cho 3 , vì 9a chia hết cho 3 => 13b phải chia hết cho 3 , mà 13 và 3 là 2 số nguyên tố => b chia hết cho 3
đến đây bạn làm tiếp đi....gần xong rồi