Cho A = 4 + 22 + 23 + ....+ 219 + 220
Rút gọn A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
A = 2 + 22 + 23 + 24 + ... + 219 + 220
A = (2 + 22) + (23 + 24) +... + (219 + 220)
A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)
A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3
Sửa đề: \(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)
=>\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)
A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)
A=\(3.1+3.2^2+...+3.2^{19}\)
A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)
Vậy A\(⋮3\)
A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)
A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)
A=3.1+3.22+...+3.2193.1+3.22+...+3.219
A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3
NÊN A⋮3
số số hạng là :[219-20]:1+1=200[số]
mà biết 20+[219+21]+[218+22]+[217+23]+...
= 20+240+240+240+...
vậy có 100 số 240
=[240 x 100]+20
=24020
\(2A=2^1+2^2+...+2^{20}\)
\(\Leftrightarrow2A-A=2^1+2^2+...+2^{20}-2^0-...-2^{19}\)
\(\Leftrightarrow A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)
\(A=2^{21}-2\)
___________
\(B=5+5^2+...+5^{50}\)
\(5B=5^2+5^3+...+5^{51}\)
\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)
\(4B=5^{51}-5\)
\(B=\dfrac{5^{51}-5}{4}\)
___________
\(C=1+3+3^2+...+3^{100}\)
\(3C=3+3^2+...+3^{101}\)
\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2C=3^{101}-1\)
\(C=\dfrac{3^{101}-1}{2}\)
\(A=4+2^2+...+2^{20}\)
\(A-4=2^2+2^3+...+2^{20}\)
\(2\left(A-4\right)=2\left(2^2+2^3+...+2^{20}\right)\)
\(2\left(A-4\right)=2^3+2^4+...+2^{21}\)
\(2\left(A-4\right)-\left(A-4\right)=\left(2^3+2^4+...+2^{21}\right)-\left(2^2+2^3+...+2^{20}\right)\)
\(A-4=2^{21}-2^2\)
\(A=2^{21}-4+4=2^{21}\)
\(A=4+2^2+2^3+...+2^{19}+2^{20}\)
\(2A=2.\left(4+2^2+2^3+...+2^{19}+2^{20}\right)\)
\(2A=2^2+2^3+2^4+...+2^{20}+2^{21}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{20}+2^{21}\right)-\left(4+2^2+2^3+...+2^{19}+2^{20}\right)\)
\(\Rightarrow A=2^2+2^3+2^4+...+2^{20}+2^{21}-4-2^2-2^3-...-2^{19}-2^{20}\)
\(A=\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{19}-2^{19}\right)+\left(2^{20}-2^{20}\right)+2^{21}-4\)
\(A=0+0+0+...+0+0\)
\(A=2^{21}-4\)
Vậy \(A=2^{21}-4\)