K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi H trọng tâm của tam giác đều BCD.

Ta có AH ⊥ (BCD). Do đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác OC 2 = OH 2 + HC 2

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay OC = OB = OD = (a 2 )/2

Vì BD = BC = CD = a nên các tam giác DOB, BOC, COD là những tam giác vuông cân tại O. Do đó hình chóp ODBC là hình chóp có đáy là tam giác đều nên tâm của mặt cầu ngoại tiếp phải nằm trên OH, ngoài ra tâm của mặt cầu ngoại tiếp này phải nằm trên trục của tam giác vuông DOB. Từ trung điểm C’ của cạnh BD ta vẽ đường thẳng song song với OC cắt đường thẳng OH tại I. Ta có I là tâm mặt cầu ngoại tiếp tứ diện OBCD. Mặt cầu này có bán kính là IC và IC 2 = IH 2 + HC 2

Chú ý rằng IH = OH/2 (vì HC′ = HC/2)

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

tại I. Ta có I là tâm mặt cầu ngoại tiếp tứ diện OBCD. Mặt cầu này có bán kính là IC và \(IC^2=\dfrac{1}{2}OH\) (vì \(HC'=\dfrac{1}{2}HC\))

Do đó :

\(IC^2=\dfrac{a^2}{24}+\dfrac{a^2}{3}=\dfrac{9a^2}{24}\)

hay \(IC=\dfrac{a\sqrt{6}}{4}\)

2 tháng 12 2018

2 tháng 3 2019

11 tháng 2 2019

NV
18 tháng 3 2021

Gọi E là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AE\perp BC\\DE\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ADE\right)\)

Trong tam giác cân ADE (cân tại E), kẻ \(DH\perp AE\Rightarrow DH\perp\left(ABC\right)\)

\(\Rightarrow\widehat{DAE}=45^0\Rightarrow\Delta ADE\) vuông cân tại E 

Gọi G và G' lần lượt là trọng tâm ABC và BCD. Trong mp (ADE), qua G kẻ đường thẳng d song song DE, qua G' kẻ d' song song AE. Gọi O là giao điểm d và d' \(\Rightarrow\) O là tâm mặt cầu ngoại tiếp tứ diện

Ta có: \(AE=DE=\dfrac{a\sqrt{3}}{2}\) ; \(AG=\dfrac{2}{3}AE=\dfrac{a\sqrt{3}}{3}\) ; \(OG=OG'=\dfrac{1}{3}AE=\dfrac{a\sqrt{3}}{6}\)

\(R=OA=\sqrt{AG^2+OG^2}=\dfrac{a\sqrt{15}}{6}\)

27 tháng 6 2018

Đáp án D

Gọi H là trung điểm của CD. Khi đó ta có AH (BCD), BH (ACD). Gọi P, Q lần lượt là tâm của các tam giác đều BCD và ACD. Dựng hình chữ nhật HPIQ thì nó là hình vuông và I là tâm mặt cầu ngoại tiếp tứ diện. Khi đó ta có bán kính mặt cầu là 

17 tháng 2 2018

Chọn B.

Phương pháp:

Ta xác định tâm mặt cầu ngoại tiếp tứ diện ABCD chính là điểm cách đều bốn đỉnh A, B, C, D.

Dựa vào tính chất tam giác cân, hai tam giác bằng nhau, tỉ số lượng giác để chứng minh các đoạn thẳng bằng nhau từ đó tìm được tâm mặt cầu.

Cách giải:

Các tam giác đều ABC và BCD có cạnh 2

⇒ B D = D C = B C = A B = A C = 2  

Nên tam giác CAD cân tại C và  tam giác BAD cân tại B.

Từ (1) và (2) suy ra tam giác CHB vuông cân tại H có cạnh huyền CB = 2.

2 tháng 4 2017

Đáp án A

Gọi H là trung điểm của BC, O là tâm đường tròn ngoại tiếp tam giác ABC suy ra H là trung điểm của AO.

Ta có D H = 3. V A B C D S Δ A B C = a 3 4 .

Gọi J là tâm mặt cầu ngoại tiếp tứ diện ABCD.

Khi đó J O ⊥ A B C .  

Do J A = R ,   O A = a  nên J O = R 2 − a 2 .  

Mặt khác H O ⊥ J O ,   H O ⊥ H D  nên ta có

a 3 4 ± R 2 − a 2 2 + a 2 2 = R 2 ⇔ R = a 91 8 .