81x6- y6 = ? theo bài phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
\(81x^2-y^2=\left(9x\right)^2-y^2\)\(=\left(9x-y\right)\left(9x+y\right)\)
\(=\left(4-a-b\right)\left(4+a-b\right)\), đằng trước là dấu trừ thì khi bỏ ngoặc phải đổi dấu chứ nhỉ :0
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
8x3- 125= (2x)3- 53= (2x-5)[(2x)2+2x5+52 ]=(2x-5)(4x2+10x+25)
\(2x^2-7x+3\)
\(=2\left(x^2-\frac{7}{2}x+\frac{3}{2}\right)\)
Vậy thôi đâu cần dùng HĐT
\(81x^6-y^6=\left(9x^3\right)^2-\left(y^3\right)^2=\left(9x^3-y^3\right)\left(9x^3+y^3\right)\)