a) \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
b) \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
c) \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
B1 :
a) \(\dfrac{2}{15}+3=\dfrac{2}{15}+\dfrac{15}{5}=\dfrac{17}{5}\)
b) \(2-\dfrac{7}{4}=\dfrac{8}{4}-\dfrac{7}{4}=\dfrac{1}{4}\)
c) \(\dfrac{17}{6}-\dfrac{11}{12}\times6=\dfrac{17}{6}-\dfrac{11}{2}=-\dfrac{8}{3}\)
d) \(\dfrac{14}{17}:7-\dfrac{15}{34}=\dfrac{2}{17}-\dfrac{5}{34}=\dfrac{4}{34}-\dfrac{5}{34}=-\dfrac{1}{34}\)
B3 :
\(x:23=146\)
\(x=146\times23\)
\(x=3358\)
b) \(x\times38=4066\)
\(x=4066:38\)
\(x=107\)
c) \(787+x\times67=2658\)
\(x\times67=2658-787\)
\(x\times67=1871\)
\(x=1871:67\)
\(x=\dfrac{1871}{67}\)
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
A -\(\dfrac{24}{25}\)
B -\(\dfrac{5}{21}\)
C -\(\dfrac{24}{47}\)
D -\(\dfrac{19}{42}\)
tick cho mk
`# \text {DNamNgV}`
`16/21 + 6/7`
`= 16/21 + 18/21`
`= 34/21`
__
`15/22 \times 11/35`
`= (15 \times 11)/(22 \times 35)`
`= (5 \times 3 \times 11)/(2 \times 11 \times 5 \times 7)`
`= (3 \times 1)/(2 \times 7)`
`= 3/14`
___
`8/11 \div 5/22`
`= 8/11 \times 22/5`
`= (8 \times 22)/(11 \times 5)`
`= (8 \times 11 \times 2)/(11 \times 5)`
`= (8 \times 2)/5`
`= 16/5`
___
`9/13 \div 27/39`
`= 9/13 \times 39/27`
`= 9/13 \times 13/9`
`= 1`
a) Ta có: \(\dfrac{-11}{15}< \dfrac{x}{15}< \dfrac{-8}{15}\)
nên -11<x<-8
hay \(x\in\left\{-10;-9\right\}\)
b) Ta có: \(\dfrac{3}{7}< \dfrac{x}{21}< \dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{9}{21}< \dfrac{x}{21}< \dfrac{14}{21}\)
Suy ra: 9<x<14
hay \(x\in\left\{10;11;12;13\right\}\)
c) Ta có: \(\dfrac{-67}{21}< \dfrac{x}{168}< \dfrac{-3}{8}\)
nên \(\dfrac{-536}{168}< \dfrac{x}{168}< \dfrac{-63}{168}\)
Suy ra: -536<x<-63
hay \(x\in\left\{-535;-534;...;-64\right\}\)