Tìm x, y ∈ Q (y ≠ 0) biết \(x-y=x\cdot y=\frac{x}{y}\)
Giải chi tiết và giải thích rõ ràng giùm mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x/3=y/2 = x/12 = y /8
y/4=z/5 = y/8 = z/10 ( mình biến đổi sao cho y có mẫu chung là 8 ý bạn )
=> x/12=y/8=z/10 = -x-y+z/ -12-8+10
= -10/-10 =1
=> x = 1.12=12
y=1.8=8
z=1.10=10
Ta ghép tổng thành tích
(xy+x)+y=0
x.(y+1)+y=0
x.(y+1)+(y+1)=1
(y+1).(x+1)=1
x,y thuốc Z
Tích của 2 số bằng 1
=>Hai thừa số chỉ có thể là 1 hoặc -1
x+1=1 =>x=0
y+1=1 => y=0
HOẶC
x+1=-1 =>x=-2
y+1=-1 => x=-2
Ghép tổng thành tích
(xy+x)+y=0
x(y+1)+y=0
x(y+1)+(y+1)=1
(y+1)(x+1)=1
x, y nguyên
tích hai số =1 => hai thừa số chỉ có thể =1 hoạc -1
\(\hept{\begin{cases}x+1=1\\y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)
Hoặc
\(\hept{\begin{cases}x+1=-1\\y+1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-2\end{cases}}}\)
Gọi UCLN(x + 1,x - 3) = d
=> x + 1 chia hết cho d
x - 3 chia hết cho d
=> x + 1 - x + 3 chia hết cho d
=> 4 chia hết cho d
=> d thuộc Ư(4)
=> d thuộc {1,2,4}
Để x + 1/x - 3 là phân số tối giản thì d phải khác 1 và một trong hai số n + 1 và n - 3 phải không chia hết cho 2 (Vì không chia hết cho hai thì sẽ không chia hết cho 4)
x - 3 ko chia hết cho 2
=> x - 3 khác 2k
=> x khác 2k + 3 ( k thuộc Z)
Vậy với X khác 2k + 3 thì x + 1.x - 3 là phân số tối giản
a)
\(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^2y^2}{2^2.4^2}=\frac{4}{64}=\frac{1}{16}\)
\(\Rightarrow\begin{cases}x=\pm1\\y=\pm2\end{cases}\)
Mà 2 ; 4 cùng dấu
=> x ; y cùng dấu
Vậy ........
b)
\(4x=7y\)
\(\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\begin{cases}x=\pm14\\y=\pm8\end{cases}\)
Mày 4 và 7 cùng dấu
=> x ; y cùng dấu
Vậy ........
áp dụng bdt cô si dạng " Rei' ta có
\(x+y+1\le3\sqrt[3]{xy}\)
từ đề bài ta suy ra \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)
suy ra \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)
áp dụng cho các BDT còn lại
\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)
suy ra \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên
vậy
\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
áp dụng BDT cô si dạng "Shinra" ta có , đặt tử số = S
\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)
có xyz=1 vậy \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)
suy ra \(S\ge3\) ( ngược dấu loại )
cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được
lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện và chỉ lừa được những thằng ngu
không nên dùng trc mặt thầy cô giáo :) .
\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)
tương tự vs các BDt còn lại và đặt tử số = S ta được
\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\)
thay \(S\le3\) vào biểu thức ta được
\(Q\le\frac{3}{3}=1\)
vây Max Q là 1 dấu = xảy ra khi x=y=z=1
Đệch, nói luôn côsi 3 số cho r
Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x-y}{2\cdot3-5}=11\)
Do đó: x=33; y=55
Ta có:
x - y = x.y => x = x.y + y = y.(x + 1)
=> \(\frac{x}{y}=x+1=x-y\) = x + (-y)
=> -y = 1 hay y = -1
=> x = -1.(x + 1) = -x - 1
=> x + x = -1 = 2x
=> \(x=\frac{-1}{2}\)
Vậy \(x=\frac{-1}{2};y=-1\)