K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

 

B A x C y z

 

Kẻ Bz // Ax

     Bz // Cy

ta có Ax // Bz//Cy=>Ax//Cy (đpcm)

21 tháng 9 2016

Ta có hình vẽ:

A x y y y B z z C

Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz

Ta có: BAx + ABz = 180o (trong cùng phía) 

ABz + CBz = ABC

Lại có: BAx + ABC + BCy = 360o (gt) 

=> BAx + ABz + CBz + BCy = 360o

=> 180o + CBz + BCy = 360o

=> CBz + BCy = 360o - 180o

=> CBz + BCy = 180o

Mà CBz và BCy là 2 góc trong cùng phía

=> Bz // Cy

Mà Ax // Bz

=> Bz // Cy (đpcm)

 

12 tháng 10 2017

đây là cậu chép trg chỗ giải đáp rồi mà mk ko đc lm giống trg giải đáp

Hình ở đâu vậy bạn?

23 tháng 10 2017

bài giải

6 tháng 10 2021

a) Ta có: CD//Ey

\(\Rightarrow\widehat{CBE}=\widehat{E_1}=130^0\)(so le trong)

b) Ta có: Ta có: CD//Ey

\(\Rightarrow\widehat{EBD}+\widehat{E_1}=180^0\)(trong cùng phía)

\(\Rightarrow\widehat{EBD}=180^0-\widehat{E_1}=50^0\)

Ta có: \(\widehat{EBD}+\widehat{B_1}=50^0+40^0=90^0\)

=> AB⊥BE

18 tháng 9 2023

Qua C kẻ đường thẳng d song song với Ax

Vì Ax // By nên d // By

Vì d // Ax nên \(\widehat A = \widehat {{C_1}}\)(2 góc so le trong)

Vì d // By nên \(\widehat B = \widehat {{C_2}}\) (2 góc so le trong)

Mà \(\widehat C = \widehat {{C_1}} + \widehat {{C_2}}\)

Vậy \(\widehat C = \widehat A + \widehat B\)(đpcm)

30 tháng 6 2017

Hình vuông

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)