so sánh 2 phân số: 41/91 và 411/911
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A.\) \(\dfrac{139}{280}\) và \(\dfrac{47}{100}\)
Phân số \(\dfrac{139}{280}\): Phần hơn \(=139\); Phần bù \(=280-139=141\)
Phân số \(\dfrac{47}{100}\): Phần hơn \(=47\); Phần bù \(=100-47=53\)
Có thể thấy phần hơn của phân số \(\dfrac{139}{280}\) lớn hơn phần hơn của phân số \(\dfrac{47}{100}\), do đó phân số \(\dfrac{139}{280}\) lớn hơn phân số \(\dfrac{47}{100}\) theo phương pháp so sánh phần hơn phần bù.
\(B.\) \(\dfrac{41}{91}\) và \(\dfrac{411}{911}\)
Phân số \(\dfrac{41}{91}\): Phần hơn \(=41\); Phần bù \(=91-41=50\)
Phân số \(\dfrac{411}{911}\): Phần hơn \(=411\); Phần bù \(=911-411=500\)
Có thể thấy phần hơn của phân số \(\dfrac{411}{911}\) lớn hơn phần hơn của phân số \(\dfrac{41}{91}\), do đó phân số \(\dfrac{41}{91}\) nhỏ hơn phân số \(\dfrac{411}{911}\) theo phương pháp so sánh phần hơn phần bù.
A) Phần hơn của \(\dfrac{139}{280}\) là \(\dfrac{141}{280}\)
\(\dfrac{47}{100}=\dfrac{141}{300}\Rightarrow\) Phần hơn của \(\dfrac{141}{300}\) là \(\dfrac{159}{300}\)
Vì \(280< 300\Rightarrow\dfrac{141}{280}>\dfrac{141}{300}>\dfrac{159}{300}\)
\(\Rightarrow\dfrac{139}{280}>\dfrac{141}{300}\)
\(\Rightarrow\dfrac{139}{280}>\dfrac{47}{100}\)
B) \(\dfrac{41}{91}=\dfrac{410}{910}\)
Phần bù của \(\dfrac{410}{910}\) là \(\dfrac{1}{910}\)
Phần bù của \(\dfrac{411}{911}\) là \(\dfrac{1}{911}\)
Vì \(910< 911\Rightarrow\dfrac{1}{910}>\dfrac{1}{911}\)
\(\Rightarrow\dfrac{410}{910}< \dfrac{411}{911}\)
\(\Rightarrow\dfrac{41}{91}< \dfrac{411}{911}\)
c. TA CÓ:
\(\frac{33}{132}=\frac{1}{4}\) mà \(\frac{33}{131}>\frac{33}{132}\) suy ra \(\frac{33}{131}>\frac{1}{4}\) (1)
\(\frac{53}{212}=\frac{1}{4}\) mà \(\frac{53}{217}<\frac{53}{212}\) suy ra \(\frac{53}{217}<\frac{1}{4}\) (2)
TỪ (1) và (2) TA CÓ: \(\frac{33}{131}>\frac{53}{217}\)
d. TA CÓ:
\(\frac{41}{91}=\frac{410}{910}=1-\frac{500}{910}\); \(\frac{411}{911}=1-\frac{500}{911}\)
TA THẤY VÌ \(\frac{500}{910}>\frac{500}{911}\) NÊN \(1-\frac{500}{910}<1-\frac{500}{911}\)
VẬY \(\frac{41}{91}<\frac{411}{911}\)
a ) Ta có :
\(1-\frac{41}{91}=\frac{50}{91}\) \(=\frac{500}{910}\) ; \(1-\frac{411}{911}=\frac{500}{911}\)
Vì \(\frac{500}{910}>\frac{500}{911}\)nên \(\frac{41}{91}< \frac{411}{911}\)
b ) Ta có :
\(1-\frac{113}{115}=\frac{2}{115}\) ; \(1-\frac{93}{95}=\frac{2}{95}\)
Vì \(\frac{2}{115}< \frac{2}{95}\)nên \(\frac{113}{115}>\frac{93}{95}\).
c ) Quy đồng TS ta có :
\(\frac{13}{53}=\frac{143}{583}\) ; \(\frac{11}{30}=\frac{143}{390}\)
Vì \(\frac{143}{583}< \frac{143}{390}\)nên \(\frac{13}{53}< \frac{11}{30}\).
Ta có :
\(\frac{41}{91}=\frac{410}{910}=1-\frac{500}{910};\frac{411}{911}=1-\frac{500}{910}\)
Ta thấy vì : \(\frac{500}{910}>\frac{500}{911}\)nên \(1-\frac{500}{910}< 1-\frac{500}{911}\)
Vậy : \(\frac{41}{91}< \frac{411}{911}\)
1
a) Ta có\(\frac{31}{40}=\frac{31.6}{40.6}=\frac{186}{240}\)
Vì \(240< 241\)
nên\(\frac{286}{240}>\frac{286}{241}\)
Vậy\(\frac{31}{40}>\frac{286}{240}\)
b)Ta có\(\frac{411}{911}=\frac{911-500}{911}=1-\frac{500}{911}\)
\(\frac{41}{91}=\frac{91-50}{91}=1-\frac{50}{91}=1-\frac{500}{910}\)
Vì \(\frac{500}{911}< \frac{500}{910}\)nên\(1-\frac{500}{911}>1-\frac{500}{910}\)
Vậy \(\frac{411}{911}>\frac{41}{91}\)
Áp dụng \(\frac{a}{b}< 1\) <=> \(\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(\frac{41}{91}=\frac{410}{910}< \frac{410+1}{910+1}=\frac{411}{911}\)
=> \(\frac{41}{91}< \frac{411}{911}\)