Tính :
\(\left(-\frac{1}{2}\right)^2;\left(-\frac{1}{2}\right)^3;\left(-\frac{1}{2}\right)^4;\left(-\frac{1}{2}\right)^5\)
Hãy rút ra nhận xét về dấu của lũy thừa với số mũ chẵn và lũy thừa với số mũ lẻ của một số hữu tỉ âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
Xét : \(\frac{1}{100}-\frac{1}{n^2}=\frac{n^2-100}{100n^2}=\frac{\left(n-10\right)\left(n+10\right)}{100n^2}\)
Áp dụng , đặt biểu thức cần tính là A , ta có :
\(A=\left(\frac{1}{100}-\frac{1}{1^2}\right)\left(\frac{1}{100}-\frac{1}{2^2}\right)\left(\frac{1}{100}-\frac{1}{3^2}\right)...\left(\frac{1}{100}-\frac{1}{20^2}\right)\)
\(=\frac{\left(1-10\right)\left(1+10\right)}{100.1^2}.\frac{\left(2-10\right)\left(2+10\right)}{100.2^2}.\frac{\left(3-10\right)\left(3+10\right)}{100.3^2}...\frac{\left(10-10\right)\left(10+10\right)}{100.10^2}...\frac{\left(20-10\right)\left(20+10\right)}{100.20^2}\)
Nhận thấy trong A có một nhân tử (10-10) = 0 nên A = 0
làm thế thì hơi dài đấy Hoàng Lê Bảo Ngọc
ta nhận thấy trong biểu thức chứa thừa số \(\frac{1}{100}-\left(\frac{1}{10}\right)^2=\frac{1}{100}-\frac{1}{100}=0\)
=>biểu thức ấy =0
\(\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{10}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot\left[\frac{1}{100}-\frac{1}{100}\right]\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)\(=\left[\frac{1}{100}-\left(\frac{1}{1}\right)^2\right]\cdot\left[\frac{1}{100}-\left(\frac{1}{2}\right)^2\right]\cdot...\cdot0\cdot...\cdot\left[\frac{1}{100}-\left(\frac{1}{20}\right)^2\right]\)=0
\(\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).\left(\frac{1}{100}-\left(\frac{1}{2}\right)^2\right)......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)....\left(\frac{1}{100}-\left(\frac{1}{10}\right)^2\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right)...\left(\frac{1}{100}-\frac{1}{100}\right)...\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=\left(\frac{1}{100}-\left(\frac{1}{1}\right)^2\right).....0......\left(\frac{1}{100}-\left(\frac{1}{20}\right)^2\right)\)
\(=0\)
Ta có :
\(\left(-\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\left(-\frac{1}{2}\right)^3=-\frac{1}{8}\)
\(\left(-\frac{1}{2}\right)^4=\frac{1}{16}\)
\(\left(-\frac{1}{2}\right)^5=-\frac{1}{32}\)
Với các số hữu tỉ âm , lúy thừa mũ chẵn thì có kết quả dương ; lũy thừa mũ lẻ có kết quả âm
Nhận xét:
Lũy thừa với số mũ chẵn của một số âm là một số dương
Lũy thừa với số mũ lẻ của một số âm là một số âm