bài 48; phân tích các đa thức sau thành nhân tử
5, x mũ 2 - y mũ 2 + 4x + 4
6, x mũ 2 + 2x - 4y mũ 2 - 4y
7, 3x mũ 2 - 4y + 4x - 3y mũ 2
8, x mũ 4 - 6x mũ 3 + 54x - 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$-48\times76+48\times(-123)$
$=-48\times76+(-48)\times123$
$=-48\times(76+123)$
$=-48\times199$
$=-9552$
−48.76+48.(−123)
=−48.76+(−48).123
=−48.(76+123)
=−48.199
=−9552
Bài 2:
a)\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: \(x\ge2\))
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+\dfrac{6}{\sqrt{81}}\sqrt{x-2}=-4\)
\(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)
\(\Leftrightarrow-\sqrt{x-2}=-4\) \(\Leftrightarrow x-2=16\)
\(\Leftrightarrow x=18\) (thỏa)
Vậy...
b)\(\sqrt{9x^2+12x+4}=4x\)(Đk:\(9x^2+12x+4\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}4x\ge0\\9x^2+12x+4=16x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+12x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\-7x^2+14x-2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-2\right)\left(-7x-2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{7}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=2\) (tm đk)
Vậy...
c) \(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}\) (đk: \(x\ge1\))
\(\Leftrightarrow x-2\sqrt{x-1}=x-1\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\) \(\Leftrightarrow x=\dfrac{5}{4}\) (tm)
Vậy...
1000 - 47 . 72 - 47 .28
= 47 . ( 1000 - 72 -28 )
= 47 .0
=0
3457 - 27 . 48 - 48 .73 + 6543
=3457 - 48 . (27 + 73 ) + 6543
= 3457 - 4800 + 6543
= 5200
Lời giải:
a. $=(327-27)+(216-16)+600=300+200+600=1100$
b. $=16\times 48+16\times 24+16\times 28$
$=16\times (48+24+28)=16\times 100=1600$
Trả lời:
5, x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y ) ( x + 2 + y )
6, x2 + 2x - 4y2 - 4y
= ( x2 - 4y2 ) + ( 2x - 4y )
= ( x - 2y ) ( x + 2y ) + 2 ( x - 2y )
= ( x - 2y ) ( x + 2y + 2 )
7, 3x2 - 4y + 4x - 3y2
= ( 3x2 - 3y2 ) + ( 4x - 4y )
= 3 ( x2 - y2 ) + 4 ( x - y )
= 3 ( x - y ) ( x + y ) + 4 ( x - y )
= ( x - y ) [ 3 ( x + y ) + 4 ]
= ( x - y ) ( 3x + 3y + 4 )
8, x4 - 6x3 + 54x - 81
= ( x4 - 81 ) - ( 6x3 - 54x )
= ( x2 - 9 ) ( x2 + 9 ) - 6x ( x2 - 9 )
= ( x2 - 9 ) ( x2 + 9 - 6x )
= ( x - 3 ) ( x + 3 ) ( x - 3 )2
= ( x - 3 )3 ( x + 3 )
a, \(x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)
b, \(x^2+2x-4y^2-4y=\left(x-2y\right)\left(x+2y\right)+2\left(x-2y\right)=\left(x-2y\right)\left(x+2+2y\right)\)
c, \(3x^2-4y+4x-3y^2=3\left(x-y\right)\left(x+y\right)-4\left(y-x\right)=\left(x-y\right)\left(3x+3y+4\right)\)
d, \(x^4-6x^3+54x-81=\left(x^2+9\right)\left(x-3\right)\left(x+3\right)-6x\left(x^2-9\right)\)
\(=\left(x-3\right)\left(x+3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3\left(x+3\right)\)