Tìm số tự nhien nhỏ nhất chia 5 dư 3, chia 7 dư 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trả lời hay nhất: Gọi số cần tìm là a
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5; 7) = 35
=> a = 26
Vậy số phải tìm là 26
3: \(\left\{{}\begin{matrix}a-1\in\left\{15;30;45;...\right\}\\a-3\in\left\{4;8;12;...\right\}\end{matrix}\right.\Leftrightarrow a=31\)
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
a:3(dư 2)
a:4(dư 3)
a:5(dư 4)
a:6(dư 5)
a:10(dư 9)
\(\Rightarrow\left(a-1\right)⋮2,3,4,5,9\)
\(\Rightarrow\left(a-1\right)\in B\left(2,3,4,5,9\right)\)
\(\Rightarrow\left(a-1\right)\in\left\{1080,2160,..\right\}\)
\(\Rightarrow a=1080+1=1081\)
Vậy số cần tìm là 1081
:))))
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Gọi số tự nhiên cần tìm là a
\(\Rightarrow\begin{cases}a=5k+3\\a=7l+4\end{cases}\) (\(k;l\in N\) ; k , l nhỏ nhất )
\(\Rightarrow5k+3=7l+4\)
\(\Rightarrow5k=7l+1\)
\(\Rightarrow k=\frac{7l+1}{5}\)
Mà k là số tự nhiên
\(\Rightarrow\frac{7l+1}{5}\) là số tự nhiên
=> \(7l+1\in B_5\)
\(\Rightarrow7l+1\in\left\{0;5;10;15;......\right\}\)
Thử ta được 7l+1 = 15 ( vì l nhỏ nhất )
=> l =2
=> k=3
=> a=18
Vậy số cần tìm là 18
18