Cho a,b,c thỏa mãn a.b.c = 2014 . Tính giá trị biểu thức
\(P=\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\dfrac{ab}{2014}=\dfrac{1}{c}\Rightarrow abc=2014\) thay vào \(A\) ta có:
\(A=\dfrac{abc\cdot a}{ab+abc\cdot a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{b\left(ac+c+1\right)}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac\cdot ab}{ab\left(ac+c+1\right)}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)
\(=\dfrac{ac+c+1}{ac+c+1}=1\Rightarrow A=1\)
Từ giả thiết suy ra : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c^2+ac+bc}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{ab\left(c^2+ac+bc\right)}\right]=0\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{ab\left(c^2+bc+ac\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow a+b=0\) hoặc \(b+c=0\) hoặc \(a+c=0\)
Nếu a + b = 0 thì c = 2014 thay vào M :
\(M=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}=\frac{a^{2013}+b^{2013}}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}=\frac{\left(a+b\right).A}{\left(ab\right)^{2013}}+\frac{1}{c^{2013}}\)
\(=\frac{1}{c^{2013}}=\frac{1}{2014^{2013}}\) (A là một nhân tử trong phân tích a2013 + b2013 thành nhân tử)
Tương tự với các trường hợp còn lại.
Vậy \(M=\frac{1}{2014^{2013}}\)
\(\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}=\frac{2014ac}{abc+2014ac+2014c}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{2014ac}{2014+2014ac+2014c}+\frac{b}{b.\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{2014ac}{2014.\left(ac+c+1\right)}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
=>Điều phải chứng minh
\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2+2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2 +\left(c-a\right)^2=0\)
do...
=> a=b=c
=> A = 0
\(P=\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}\)
\(P=\frac{a^2bc}{ab+a^2bc+abc}+\frac{ab}{abc+ab+a^2bc}+\frac{c}{ac+c+1}\)
\(P=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(P=\frac{ac+1+c}{1+ac+c}=1\)