1) CMR nếu a nguyên tố > 3 thì 2+2017a3 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
p là số nguyên tố lớn hơn 3 => p có dạng 3k + 1 hoặc 3k + 2 ( k thuộc N*)
+) Nếu = 3k + 1 => p+2 = 3k + 3 = 3(k + 1) là hợp số => Loại
Vậy p = 3k + 2. Vì p nguyên tố nên k lẻ (nếu k chẵn thì 3k + 2 chẵn)
=> p + (p + 2) = 3k + 2 + (3k + 2 + 2) = 6k + 6 = 6.(k + 1) mà k + 1 chia hết cho 2 do k lẻ
Nên 6(k + 1) chia hết cho 6.2 = 12
Vậy p + (p + 2) chia hết cho 12
p2 − 1 = (p + 1) (p − 1)
trước hết p là số lẻ nêm p‐1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8
mặt khác p>3 nên p‐1 hoặc p+1 chia hết cho 3
﴾3;8﴿=1 nên suy ra đpcm
Câu hỏi của Nguyễn Anh Kim Hân - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Tích tớ nha
1) p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho 2*3 = 6
2) a nguyên tố > 3 nên là số lẻ và không chia hết cho 3
=> k phải là số chẳn, vì nếu k lẻ thì a+k chẳn và > 2 nên ko là số nguyên tố
đặt k = 3n+r (với r = 0, 1, 2)
có: thì a+k = 3n+a+r và a+2k = 6n+a+2r
* nếu a chia 3 dư 1 thì a+r chia hết cho 3 nếu r = 2 hoặc a+2r chia hết cho 3 nếu r = 1
nên ta phải có r = 0
* nếu a chia 3 dư 2 thì a+r chia hết cho 3 nếu r = 1 hoặc a+2r chia hết cho 3 nếu r = 2
=> r = 0
cả 2 trường hợp của a đều dẩn đến r = 0 => k chia hết cho 3
Vậy k chẳn, chia hết cho 3 => k chia hết cho 6
3) p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
Tích nha
do a ;a+k ; a+2k là số nguyên tố >3
=> a;a+k;a+2k lẻ
=> 2a+k chẵn =>k⋮ 2
mặt khác a là số nguyên tố >3
=> a có dạng 3p+1 và 3p+2(p∈ N*)
xét a=3p+1
ta lại có k có dạng 3b ;3b+1;3b+2(b∈ N*)
với k=3b+1 ta có 3p+1+2(3b+1)=3(p+1+3b) loại vì a+2k là hợp số
với k=3b+2 => b+k= 3(p+b+1) loại
=> k=3a
tương tự với 3p+2
=> k=3a
=> k⋮3
mà (3;2)=1
=> k⋮6
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẳn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p+1 chia hết cho (2 . 3) = 6 (đpcm)
p là số nguyên tố >3=>p=3k+1;3k+2
xét p=3k+2=>10p+1=10(3k+2)+1
=3.10k+20+1=3.10k+21=3(10k+7) chia hết cho 3
=>10p+1 là hợp số(trái giả thuyết)
=>p=3k+1
=>5p+1=5(3k+1)+1=3.5k+5+1=3.5k+6=3(5k+2) chia hết cho 3 (1)
p>3=>p=2q+1
=>5p+1=5(2q+1)+1=10q+5+1=10q+6=2(5q+3) chia hết cho 2 (2)
từ (1);(2)=>5p+1 chia hết cho 2;3
vì (2;3)=1=>5p+1 chia hết cho 6
=>đpcm
đề sai
mk cng nghix vaayj