K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

\(n\left(n+1\right)\left(n+2\right)⋮3\)

\(n\left(n+1\right)\left(n+2\right)⋮2\)

Có ƯCLN (2,3) = 1

Nên: \(n\left(n+1\right)\left(n+2\right)⋮2.3=6\)

Lại có: \(1=\frac{6}{6}⋮6\)

Vậy: \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\)

6 tháng 6 2015

- Với n = 0 thì n(n+1)(n + 2) = 0 nên \(\frac{0}{2}+1=1\), ko phải là số nguyên tố

- Với n = 1 thì n + 1 = 2 ; n + 2 = 3. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{2}+1=\frac{1.2.3}{2}+1=4\), không phải số nguyên tố

- Với n = 2 thì n + 1 = 3 ; n + 2 = 4.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{2.3.4}{6}+1=5\), là số nguyên tố 

- Với n = 3 thì n + 1 = 4 ; n + 2 = 5.Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{3.4.5}{6}+1=11\), là số nguyên tố

- Với n \(\ge\) 4 thì n + 1 \(\ge\) 5 ; n + 2 \(\ge\) 6. Khi đó \(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\ge\frac{4.5.6}{6}+1=21\)

, luôn là hợp số.

                                Vậy chỉ có kết quả là 5 và 11 là thỏa mãn.

6 tháng 6 2015

thì bạn phải chỉ rõ, lí luận chứ lỡ đâu cũng trong muôn vàn số vẫn có trường hợp đặc biệt

6 tháng 6 2015

n=1,p=2

n=2,p=5

n=3,p=11

1 tháng 7 2015

\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1=\frac{n\left(n+1\right)\left(n+2\right)}{6}+\frac{6}{6}=\frac{n\left(n+1\right)\left(n+2\right)+6}{6}\)

Nếu n=1 thì ta có: [1(1+1)(1+2)+6]/6=[1*2*3+6]/6=12/6=2(là số nguyên tố)

Nếu n=2 thì ta có: [2(2+1)(2+2)+6]/6=[2*3*4+6]/6=24/6=4(ko phải là số nguyên tố)

Nếu n=3 thì ta có: [3(3+1)(3+2)+6]/6=[3*4*5+6]/6=11(là số nguyên tố)

Nếu n=4 thì ta có: [4*5*6+6]/6=120/6=20(ko phải là số nguyên tố)

cứ như vậy tiếp dần thì ta chỉ có n=1 thì p mới là số nguyên tố, thì p=2

Vậy tất cả các số nguyên tố p cần tìm chỉ có thể p=2

cái này mk ko chắc lắm đâu, chưa làm dạng này bao giờ

 

1 tháng 7 2015

Thạch ơi, cái bài này mk giải như thế đúng k?

2 tháng 11 2016

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

NV
20 tháng 8 2021

TH1: \(n\) chẵn \(\Rightarrow n=2k\) (với \(k\in N\)*)

\(p=\dfrac{2k\left(2k+1\right)}{2}-1=2k^2+k-1=\left(k+1\right)\left(2k-1\right)\)

Do \(k+1\ge2>1\) nên p nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}2k-1=1\\k+1\text{ là số nguyên tố}\end{matrix}\right.\)

\(2k-1=1\Rightarrow k=1\)

Khi đó \(p=2\) (thỏa mãn)

TH2: \(n\) lẻ \(\Rightarrow n=2k+1\) (với \(k\in N\))

\(p=\dfrac{\left(2k+1\right)\left(2k+2\right)}{2}-1=\left(2k+1\right)\left(k+1\right)-1=2k^2+3k=k\left(2k+3\right)\)

Do \(2k+3\ge3>1\) nên p là nguyên tố khi và chỉ khi \(\left\{{}\begin{matrix}k=1\\2k+3\text{ là số nguyên tố}\end{matrix}\right.\)

Khi \(k=1\Rightarrow p=5\) là số nguyên tố (thỏa mãn)

Vậy \(p=\left\{2;5\right\}\)

20 tháng 8 2021

Em cảm ơn

DD
20 tháng 8 2021

\(p=\frac{n\left(n+1\right)}{2}-1=1+2+...+n-1=2+3+...+n\)

 \(p=2+3+...+n\)

\(p=n+n-1+...+2\)

\(2p=\left(n+2\right)+\left(n+2\right)+...+\left(n+2\right)=\left(n-1\right)\left(n+2\right)\)

\(p=\frac{\left(n-1\right)\left(n+2\right)}{2}\)

- Nếu \(n\)chẵn: \(p\)chia hết cho \(n-1\)và \(\frac{n+2}{2}\)

nên là số nguyên tố khi \(\orbr{\begin{cases}n-1=1\\\frac{n+2}{2}=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=2\left(tm\right)\\n=0\left(l\right)\end{cases}}\)suy ra \(p=2\).

- Nếu \(p\)lẻ: \(p\)chia hết cho \(\frac{n-1}{2}\)và \(n+2\)

do đó là số nguyên tố khi \(\orbr{\begin{cases}\frac{n-1}{2}=1\\n+2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\left(tm\right)\\n=-1\left(l\right)\end{cases}}\)suy ra \(p=5\).

Vậy \(p=2\)hoặc \(p=5\).