Só sánh
Cho A = 3 +2^2+2^3+2^4+...+2^2001 và B = 2^2003
Cho C = 4 +3^2+3^3+3^4+...3^2003+3^2004 và D = 3^2005
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mời bạn tham khảo các link sau:
a),b),c):https://hoidap247.com/cau-hoi/214111
d):https://olm.vn/hoi-dap/detail/78449788871.html
A=1-3+5-7+....+2001-2003+2005
A=[(1-3)+(5-7)+.....+(2001-2003)]+2005
A=[(-2)+(-2)+....+(-2)]+2005
Vì từ 1 đến 2003 có: 1002 số hạng => có 501 cặp => có 501 số -2
A=(-2) x 501 +2005
A=-1002+2005
A=1003
A=1-3+5-7+...+2001-2003+2005
A=(1-3)+(5-7)+....+(2001-2003)+2005
A=(-2)+(-2)+...+(-2)+2005
A=(-2).501+2005
A=(-1002)+2005
A=1003
B=1-2-3+4+5-6-7+8+...+1993-1994
B=(1-2-3+4)+(5-6-7+8)+....+(1989-1990-1991+1992)+(1993-1994)
B=0+0+...+0+(-1)
B=(-1)
C=1+2-3-4+5+6-7-8+9+...+2002-2003-2004+2005+2006
C=(1+2-3-4)+(5+6-7-8)+....+(2001+2002-2003-2004)+(2005+2006)
C=(-4)+(-4)+....+(-4)+4011
C=(-4).501+4011
C=(-2004)+4011
C=2007
\(B=4+3^2+3^3+...+3^{2004}\)
\(\Rightarrow B=1+3+3^2+3^3+...+3^{2004}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{2005}\)
\(\Rightarrow3B-B=3+3^2+3^3+...+3^{2005}-1-3-3^2-...-3^{2004}\)
\(\Rightarrow2B=3^{2005}-1\)
\(\Rightarrow B=\frac{3^{2005}-1}{2}< \frac{3^{2005}}{2}< 3^{2005}=C\)
Vậy B < C
a) 1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
S = (1+2-3+4) + (5+6-7-8) + ... + (2001+2002-2003-2004) + (2005+2006)
S = (-4) + (-4) + ... + (-4) + (2005+2006)
dãy S có 2004 - 1 : 1 + 1 = 2004 số hạng
dãy S có 2004 : 4 = 501 chữ số (-4)
do đó S = -4. 501 = -2004
S = -2004 + (2005+2006)
S = -2004 + 4011
S = 2007
b) tương tự nhé!!
675676587689689
a) Nhóm 4 số hạng liên tiếp từ đầu dãy:
A = (1-2-3+4)+(5-6-7+8)+(9-10-11+12)+ ...+(2001-2002-2003+2004) = 0
b) Nhóm 4 số hạng liên tiếp bắt đầu từ số thứ 2:
B = 1+(2-3-4+5)+(6-7-8+9)+...+(2002-2003-2004+2005)+2006 = 1+2006 = 2007.
\(A=3+2^2+2^3+2^4+..+2^{2001}\)
\(\Rightarrow A=1+2+2^2+2^3+2^4+...+2^{2001}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2002}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2002}\right)-\left(1+2+3^2+...+2^{2001}\right)\)
\(\Rightarrow A=2^{2002}-1\)
Vì \(2^{2002}-1< 2^{2003}\) nên \(A< 2^{2003}\)
Ta có:
\(C=4+3^2+3^3+...+3^{2003}+3^{2004}\)
\(C=1+3+3^2+3^3+...+3^{2003}+3^{2004}\)
\(\Rightarrow3C=3+3^2+3^3+...+3^{2004}+3^{2005}\)
\(\Rightarrow3C-C=\left(3+3^2+3^2+...+3^{2004}+3^{2005}\right)-\left(1+3+3^2+3^3+...+3^{2003}+3^{2004}\right)\)
\(\Rightarrow2C=3^{2005}-1\)
\(\Rightarrow C=\left(3^{2005}-1\right):2< 3^{2005}\)
\(\Rightarrow C< 3^{2005}\)