Cho ΔABC vuông tại A, đường cao AH. Cmr:
a, AB2 = BH . BC
b, AH2 = BH . CH
c, \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)+ \(\frac{1}{AC^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì tam giác ABC vuông tại A , áp dụng định lí pytago ta có
\(AB^2+AC^2=BC^2=>BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)
b,xét tam giác ABH và tam giác CBA ta có
góc B chung
góc AHB= góc BAC=90 độ
=>tam giác ABH đồng dạng tam giác CBA(góc.góc)
=>\(\dfrac{BC}{AB}=\dfrac{AB}{BH}< =>AB^2=BH.BC\)
c,ta có \(AB^2=BH.BC=>BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=\dfrac{18}{5}cm\)
\(=>HC=BC-HB=10-\dfrac{18}{5}=\dfrac{32}{5}\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Ta có: BC=BH+HC(H nằm giữa B và C)
nên BC=4+9=13(cm)
Ta có: \(AB^2=BH\cdot BC\)(cmt)
\(\Leftrightarrow AB^2=4\cdot13\)
hay \(AB=2\sqrt{13}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=13^2-\left(2\sqrt{13}\right)^2=117\)
hay \(AC=3\sqrt{13}\left(cm\right)\)
a)
Trong tam giác ABC có :
\(AH^2=BH.CH=4.9=36\Rightarrow AH=6\left(cm\right)\)
Áp dụng Pitago trong tam giác AHB vuông tại H ta có :
\(AB^2=AH^2+BH^2=6^2+4^2=52=BH.BC=4\left(9+4\right)\)
(đpcm)
b)
\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-52}=3\sqrt{13}\)
d) Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)
Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AB^2=BC\cdot BH\)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó:ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)
f: AC/AB=4/3
nên AC=4/3AB=40/3(cm)
=>BC=50/3(cm)
=>AH=8(cm)
=>BH=6(cm)
=>CH=32/3(cm)
b: BH=36(cm)
CH=64(cm)
AB=60(cm)
AC=80(cm)
a) Xét hai tam giác vuông : tam giác HBA và tam giác ABC có :
góc B chung , góc AHB = góc BAC = 90 độ
=> tam giác HBA đồng dạng với tam giác ABC (g.g)
=> \(\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)
b) Xét hai tam giác vuông : tam giác HBA và tam giác HAC có :
góc AHB = góc AHC = 90 độ , góc ABH = góc HAC vì cùng phụ với góc BCA
=> tam giác HBA đồng dạng với tam giác HAC
=> \(\frac{BH}{AH}=\frac{AH}{CH}\Rightarrow AH^2=BH.CH\)
c) Ta có : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}BC.AH\Rightarrow AB.AC=BC.AH\)
\(\Rightarrow\left(AB.AC\right)^2=\left(BC.AH\right)^2\Leftrightarrow\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}=\frac{AB^2+AC^2}{AB^2.AC^2}\)
\(\Rightarrow\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)