Cho tam giác ABC nhọn , vẽ AD vuông góc AB và AD=AB ( D và C khác phía với AB ) . vẽ AE vuông góc AC và AE=AC CE khác phía với B đối với AC . chứng minh : DC=BE, DC vuông góc BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔDAC và ΔBAE có
AD=AB
góc DAC=góc BAE
AC=AE
=>ΔDAC=ΔBAE
=>DC=BE
Ta có : \(\widehat{DAB}=\widehat{CAE}=90^0\Rightarrow\widehat{DAB}+\widehat{BAC}=\widehat{CAE}+\widehat{BAC}\)
hay \(\widehat{DAC}=\widehat{EAB}\)
Xét \(\Delta ADC\)và \(\Delta ABE\)có :
AD = AB
\(\widehat{DAC}=\widehat{EAB}\)
AC = AE
\(\Rightarrow\Delta ADC=\Delta ABE\left(c.g.c\right)\Rightarrow DC=BE\)
Vì tam giác ADC = tam giác ABE nên \(\widehat{AEB}=\widehat{ACD}\)
mà \(\widehat{AKE}=\widehat{BKC}\left(doi-dinh\right),\widehat{AKE}+\widehat{AEB}=90^0\)
\(\Rightarrow\widehat{BKC}+\widehat{AEB}=90^0\) hay góc \(\widehat{BKC}+\widehat{ACD}=90^0\)
\(\Rightarrow DC\perp BE\)
∠DAC = ∠DAB + ∠BAC = 90o + ∠BAC
∠BAE = ∠BAC + ∠CAE = ∠BAC + 90o
⇒ ∠DAC = ∠BAE
Xét ΔABE và ΔADC, ta có:
Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K
Ta có: ΔABE = ΔADC (cmt)
⇒ ∠ABE = ∠ADC (hai góc t.ư)
hay ∠HBK = ∠ADH
+ ΔADH và ΔBKH đều có tổng ba góc trong mỗi tam giác bằng 180o nên có:
∠ADH + ∠DAH + ∠AHD = ∠BKH + ∠KHB + ∠HBK
Mà ∠AHD = ∠BHK (hai góc đối đỉnh)
∠ADH = ∠HBK (chứng minh trên)
Suy ra ∠DAH = ∠HKB
Mà ∠DAH = 90o nên ∠HKB = 90o
⇒ DC ⊥ BE (điều phải chứng minh)
Ta có : Góc DAB = góc CAE = 90 độ => góc DAB + góc BAC = góc CAE + góc BAc
hay góc DAC = góc EAB
Xét tam giác ADC và tam giác ABE có :
AD = AB ; AC = AE ; góc DAC = góc EAB
=> tam giác ADC = tam giác ABE => DC = BE
Vì tam giác ADC = tam giác ABE nên góc AEB = góc ACD
mà góc AKE = góc BKC (đối đỉnh) , góc AKE + góc AEB = 90 độ
=> góc BKC + góc AEB = 90 độ hay góc BKC + góc ACD = 90 độ
=> góc DC vuông góc BE
Vì góc DAB=góc EAC => DÂB + BÂC = EÂC + BÂC
=> tam giác ADC = tam giác ABE (c.g.c)
=> DC = BE (dpcm)
+) tam giác AEK ( Â = 90 độ )
=> góc AEK + góc AKE = 90 độ
mà Góc AKE = góc BKC ( đ đỉnh ) và góc ACD = góc AEK ( tam giác ADC = tam giác AEB )
nên góc BKC + góc AcD = 90 độ
=> DC vuông góc với BE ( đpcm )