K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Sao không ai giúp hết vậy!

7 tháng 6 2020

a) x<y

<=> x.x<x.y
<=> x\(^2\)<xy

x<y
<=> x.y<y.y
<=>xy<y\(^2\)

b) áp dụng kết quả từ câu a và tính chất bắc cầu, ta có:
x\(^2\)<xy<y\(^2\)

<=> x\(^2\)<y\(^2\)

x\(^2\)<y\(^2\)

=> x\(^2\).y<y\(^2\).y

<=> x\(^2\)y<y\(^3\)(1)

x\(^2\)<y\(^2\)

=> x\(^2\).x<y\(^2\).x

<=> x\(^3\)<xy\(^2\)(2)
x<y

<=> x.xy<y.xy
<=> x\(^2\)y<xy\(^2\)(3)

Từ (1),(2) và (3) ta có
x\(^3\)<y\(^3\)

13 tháng 8 2016

\(x^2+y^2\le x+y\Leftrightarrow\left(2x-1\right)^2\le-4y^2+4y+1\text{ (1)}\)

+Nếu \(-4y^2+4y+1< 0\) thì (1) có \(VT\ge0>VP\), (1) ko thỏa --> loại.

+Nếu \(-4y^2+4y+1=0\Leftrightarrow y=\frac{1+\sqrt{2}}{2}\text{ }\left(do\text{ }y>0\right)\) thì\(\left(2x-1\right)^2\le0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

\(A=x+3y=2+\frac{3}{\sqrt{2}}\approx4.12\)

+Xét \(-4y^2+4y+1>0\Leftrightarrow\frac{1-\sqrt{2}}{2}< y< \frac{1+\sqrt{2}}{2}\)

\(\Rightarrow0< y< \frac{1+\sqrt{2}}{2}\approx1.207\)

\(\left(1\right)\Leftrightarrow-\sqrt{-4y^2+4y+1}\le2x-1\le\sqrt{-4y^2+4y+1}\)

\(\Rightarrow2x\le\sqrt{2-\left(2y-1\right)^2}+1\)

\(2A=2x+6y\le\sqrt{2-\left(2y-1\right)^2}+3\left(2y-1\right)+1+3\)

Áp dụng bđt Bu-nhia-cop-xki

\(1.\sqrt{2-\left(2y-1\right)^2}+3.\left(2y-1\right)\le\sqrt{1^2+3^2}.\sqrt{2-\left(2y-1\right)^2+\left(2y-1\right)^2}=2\sqrt{5}\)

Dấu bằng xảy ra khi \(\frac{1}{3^2}=\frac{2-\left(2y-1\right)^2}{\left(2y-1\right)^2}\Leftrightarrow\left(2y-1\right)^2=\frac{9}{5}\)

\(\Leftrightarrow2y-1=\pm\frac{3}{\sqrt{5}}\Leftrightarrow\orbr{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\approx1.17\in\left(0;\frac{1+\sqrt{2}}{2}\right)\\y=-\frac{3}{2\sqrt{5}}+\frac{1}{2}< 0\end{cases}}\)

\(\Rightarrow2A\le4+2\sqrt{5}\)

\(\Rightarrow A\le2+\sqrt{5}\approx4.23\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}y=\frac{3}{2\sqrt{5}}+\frac{1}{2}\\x=\frac{1+\sqrt{2-\left(2y-1\right)^2}}{2}=\frac{1}{2\sqrt{5}}+\frac{1}{2}\end{cases}}\)

12 tháng 8 2016

.Điểm rơi \(x=y=1\)

\(A\le4\)

Kết thúc chứng minh.

26 tháng 7 2019

a.

\(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=1\)

Vì x,y>0 nên \(xy>0\)

Vậy \(0< xy\le1\)

b.

\(A=x^2y^2\left(x^2+y^2\right)=\frac{xy}{2}\cdot2xy\left(x^2+y^2\right)\le\frac{\left(x+y\right)^2}{8}\cdot\frac{\left(x+y\right)^4}{4}=\frac{2^6}{8\cdot4}=2\)

Vậy \(A_{max}=2\Leftrightarrow x=y=1\)

26 tháng 7 2019

áp dụng bđt gì vậy bạn?

Ta cá:\(K=x^2-2\times x-y=x^2-\left(2\times x+y\right)\)

Để K đạt GTLN

Suy ra x^2 lớn nhất nên x lớn nhất

2x+y nhỏ nhất nên y nhỏ nhất(2x Ko nhỏ nhất vi x lớn nhất nên 2x lớn nhất)

Mà \(y\ge0\)

Ta chọn y=0,thay vào 2x+y ta đc

\(2\times x+0\le4\)

\(\Rightarrow2\times x\le4\)

\(\Rightarrow x\le2\)

Mà x lớn nhất nên ta chọn x=2 do đá k sẽ bằng

\(K=2^2-2\times2-0=4-4=0\)

Vậy K đạt GTLN là 0 tại x =2 và y=0

nhớ h cho mk nha

27 tháng 12 2016

mik chỉ giải được khi bé hơn hoặc bằng 0 thôi bạn thông cảm nha 

x^2-2xy+x-2y<hoặc bằng 0

x(x+1)-2y(x+1)<hoặc bằng 0

(x+1)(x-2y)< hoăc bằng 0 

mà x+1>0 do x>0 

nên x-2y < hoặc bằng 0 

     x<hoặc bằng 2y suy ra 3x bé hơn hoặc bằng 6y

A=x^2-5y^2+3x

  =x^2-4y^2-y^2+3x

  =(x-2y)(x+2y)-y^2+3x < hoặc bằng (x-2y)(x+2y)-y^2+6y-9+9 =(x-2y)(x+2y)-(y-3)^2+9 bé hơn hoặc bằng 9 do cả hai cái tích và bình phương trên đều bé hơn hoặc bằng 0 

suy ra GTLN của A=9 tại y=3,x=6   

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2